Tiemens DK, Kleimeier L, Leenders E, et al. The most important problems and needs of rasopathy patients with a noonan syndrome spectrum disorder. Orphanet J Rare Dis. 2023;18(1):198. https://doi.org/10.1186/s13023-023-02818-y.
Article PubMed PubMed Central Google Scholar
Hebron KE, Hernandez ER, Yohe ME. The RASopathies: from pathogenetics to therapeutics. Dis Model Mech. 2022;15(2):049107. https://doi.org/10.1242/dmm.049107.
Zenker M. Clinical overview on RASopathies. Am J Med Genet C Semin Med Genet. 2022;190(4):414–24. https://doi.org/10.1002/ajmg.c.32015.
Article CAS PubMed Google Scholar
Shaw AC, Kalidas K, Crosby AH, et al. The natural history of Noonan syndrome: a long-term follow-up study. Arch Dis Child. 2007;92(2):128–32. https://doi.org/10.1136/adc.2006.104547.
Article CAS PubMed Google Scholar
Van der Burgt I. Noonan syndrome. Orphanet J Rare Dis. 2007;14(2):4. https://doi.org/10.1186/1750-1172-2-4.
Romano AA, Allanson JE, Dahlgren J, et al. Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics. 2010;126(4):746–59. https://doi.org/10.1542/peds.2009-3207.
Roberts AE, Allanson JE, Tartaglia M, Gelb BD. Noonan syndrome. Lancet. 2013;381(9863):333–42. https://doi.org/10.1016/S0140-6736(12)61023-X.
Article CAS PubMed PubMed Central Google Scholar
Capri Y, Flex E, Krumbach OHF, et al. Activating mutations of RRAS2 are a rare cause of noonan syndrome. Am J Hum Genet. 2019;104(6):1223–32. https://doi.org/10.1016/j.ajhg.2019.04.013.
Article CAS PubMed PubMed Central Google Scholar
Roberts AE. Noonan Syndrome. 2001 Nov 15 [updated 2022 Feb 17]. In: Adam MP, Feldman J, Mirzaa GM, et al. editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2023.
Zenker M, Edouard T, Blair JC, Cappa M. Noonan syndrome: improving recognition and diagnosis. Arch Dis Child. 2022;107(12):1073–8. https://doi.org/10.1136/archdischild-2021-322858.
Allen MJ, Sharma S. Noonan Syndrome. 2023 Jan 9. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–.
Briggs BJ, Dickerman JD. Bleeding disorders in Noonan syndrome. Pediatr Blood Cancer. 2012;58(2):167–72. https://doi.org/10.1002/pbc.23358.
Nugent DJ, Romano AA, Sabharwal S, Cooper DL. Evaluation of bleeding disorders in patients with Noonan syndrome: a systematic review. J Blood Med. 2018;23(9):185–92. https://doi.org/10.2147/JBM.S164474.
Lioncino M, Monda E, Verrillo F, Moscarella E, Calcagni G, Drago F, Marino B, Digilio MC, Putotto C, Calabrò P, Russo MG, Roberts AE, Gelb BD, Tartaglia M, Limongelli G. Hypertrophic cardiomyopathy in Rasopathies: diagnosis, clinical characteristics, prognostic implications, and management. Heart Fail Clin. 2022;18(1):19–29. https://doi.org/10.1016/j.hfc.2021.07.004.
Edouard T, Zenker M, Östman-Smith I, Ortega Castelló E, Wolf CM, Burkitt-Wright E, Verloes A, García-Miñaúr S, Tartaglia M, Shaikh G, Lebl J. Management of growth failure and other endocrine aspects in patients with Noonan syndrome across Europe: a sub-analysis of a European clinical practice survey. Eur J Med Genet. 2022;65(1):104404. https://doi.org/10.1016/j.ejmg.2021.104404.
Article CAS PubMed Google Scholar
Linglart L, Gelb BD. Congenital heart defects in Noonan syndrome: diagnosis, management, and treatment. Am J Med Genet C Semin Med Genet. 2020;184(1):73–80. https://doi.org/10.1002/ajmg.c.31765.
Article PubMed PubMed Central Google Scholar
Calcagni G, Limongelli G, D’Ambrosio A, et al. Cardiac defects, morbidity and mortality in patients affected by RASopathies. CARNET Study results Int J Cardiol. 2017;15(245):92–8. https://doi.org/10.1016/j.ijcard.2017.07.068.
Meier AB, Raj Murthi S, Rawat H, et al. Cell cycle defects underlie childhood-onset cardiomyopathy associated with Noonan syndrome. Science. 2021;25(1):103596. https://doi.org/10.1016/j.isci.2021.103596.
Hickey EJ, Mehta R, Elmi M, et al. Survival implications: hypertrophic cardiomyopathy in Noonan syndrome. Congenit Heart Dis. 2011;6(1):41–7. https://doi.org/10.1111/j.1747-0803.2010.00465.x.
Wilkinson JD, Lowe AM, Salbert BA, et al. Outcomes in children with Noonan syndrome and hypertrophic cardiomyopathy: a study from the Pediatric Cardiomyopathy Registry. Am Heart J. 2012;164(3):442–8. https://doi.org/10.1016/j.ahj.2012.04.018.
Kaltenecker E, Schleihauf J, Meierhofer C, Shehu N, Mkrtchyan N, Hager A, Kühn A, Cleuziou J, Klingel K, Seidel H, Zenker M, Ewert P, Hessling G, Wolf CM. Long-term outcomes of childhood onset Noonan compared to sarcomere hypertrophic cardiomyopathy. Cardiovasc Diagn Ther. 2019;9(Suppl 2):S299-309. https://doi.org/10.21037/cdt.2019.05.01.
Article PubMed PubMed Central Google Scholar
Kriz C, Flores S, Villarreal EG, et al. Impact of Noonan Syndrome on admissions for pediatric cardiac surgery. Minerva Pediatr (Torino). 2022;74(4):461–7. https://doi.org/10.23736/S2724-5276.19.05461-6.
Morris JK, Garne E, Loane M, et al. EUROlinkCAT protocol for a European population-based data linkage study investigating the survival, morbidity and education of children with congenital anomalies. BMJ Open. 2021;11(6):e047859. https://doi.org/10.1136/bmjopen-2020-047859.
Article PubMed PubMed Central Google Scholar
Boyd PA, Haeusler M, Barisic I, et al. Paper 1: the EUROCAT network-organization and processes. Birth Defects Res A Clin Mol Teratol. 2011;91(Suppl 1):S2-15. https://doi.org/10.1002/bdra.20780.
Article CAS PubMed Google Scholar
Kinsner-Ovaskainen A, Lanzoni M, Garne E, et al. A sustainable solution for the activities of the European network for surveillance of congenital anomalies: EUROCAT as part of the EU platform on rare diseases registration. Europ J Med Genetics. 2018;61(9):513–7.
EUROCAT Guide 1.5: https://eu-rd-platform.jrc.ec.europa.eu/eurocat/data-collection/guidelines-for-data-registration_en#inline-nav-2
Loane M, Given JE, Tan J, et al. Linking a European cohort of children born with congenital anomalies to vital statistics and mortality records: a EUROlinkCAT study. PLoS ONE. 2021;16(8):e0256535. https://doi.org/10.1371/journal.pone.0256535.
Article CAS PubMed PubMed Central Google Scholar
Loane M, Given JE, Tan J, et al. Creating a population-based cohort of children born with and without congenital anomalies using birth data matched to hospital discharge databases in 11 European regions: assessment of linkage success and data quality. PLoS ONE. 2023;18(8):e0290711. https://doi.org/10.1371/journal.pone.0290711.
Article CAS PubMed PubMed Central Google Scholar
Glinianaia SV, Rankin J, Pierini A, et al. Ten-year survival of children with congenital anomalies: a European cohort study. Pediatrics. 2022;11:e2021053793. https://doi.org/10.1542/peds.2021-053793.
Santoro M, Coi A, Pierini A, et al. Temporal and geographical variations in survival of children born with congenital anomalies in Europe: a multi-registry cohort study. Paediatr Perinat Epidemiol. 2022;36(6):792–803. https://doi.org/10.1111/ppe.12884.
Article PubMed PubMed Central Google Scholar
Coi A, Santoro M, Pierini A, et al. Survival of children with rare structural congenital anomalies: a multi-registry cohort study. Orphanet J Rare Dis. 2022;17(1):142. https://doi.org/10.1186/s13023-022-02292-y.
Article PubMed PubMed Central Google Scholar
Urhoj SK, Tan J, Morris JK, Given J, et al. Hospital length of stay among children with and without congenital anomalies across 11 European regions-a population-based data linkage study. PLoS ONE. 2022;17(7):e0269874. https://doi.org/10.1371/journal.pone.0269874.
留言 (0)