Tononi G, Boly M, Cirelli C (2024) Consciousness and sleep. Neuron 112:1568–1594. https://doi.org/10.1016/j.neuron.2024.04.011
Article CAS PubMed Google Scholar
V. K. Chattu, M. D. Manzar, S. Kumary, D. Burman, D. W. Spence and S. R. Pandi-Perumal (2018) The global problem of insufficient sleep and its serious public health implications. Healthcare (Basel) 7 https://doi.org/10.3390/healthcare7010001
Luyster FS, Strollo PJ Jr, Zee PC, Walsh JK (2012) Sleep: a health imperative. Sleep 35:727–734. https://doi.org/10.5665/sleep.1846
Article PubMed PubMed Central Google Scholar
Czeisler CA (2013) Perspective: casting light on sleep deficiency. Nature 497:S13. https://doi.org/10.1038/497S13a
Article CAS PubMed Google Scholar
Liew SC, Aung T (2021) Sleep deprivation and its association with diseases- a review. Sleep Med 77:192–204. https://doi.org/10.1016/j.sleep.2020.07.048
Hudson AN, Van Dongen HPA, Honn KA (2020) Sleep deprivation, vigilant attention, and brain function: a review. Neuropsychopharmacology 45:21–30. https://doi.org/10.1038/s41386-019-0432-6
Musiek ES, Holtzman DM (2016) Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 354:1004–1008. https://doi.org/10.1126/science.aah4968
Article CAS PubMed PubMed Central Google Scholar
Tuan LH, Yeh JW, Lee LJ, Lee LJ (2023) Sleep deprivation induces dopamine system maladaptation and escalated corticotrophin-releasing factor signaling in adolescent mice. Mol Neurobiol 60:3190–3209. https://doi.org/10.1007/s12035-023-03258-2
Article CAS PubMed Google Scholar
Kemp JM, Powell TP (1971) The structure of the caudate nucleus of the cat: light and electron microscopy. Philos Trans R Soc Lond B Biol Sci 262:383–401. https://doi.org/10.1098/rstb.1971.0102
Article CAS PubMed Google Scholar
Glass M, Dragunow M, Faull RL (2000) The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 97:505–519. https://doi.org/10.1016/s0306-4522(00)00008-7
Article CAS PubMed Google Scholar
Chang HT, Wilson CJ, Kitai ST (1982) A Golgi study of rat neostriatal neurons: light microscopic analysis. J Comp Neurol 208:107–126. https://doi.org/10.1002/cne.902080202
Article CAS PubMed Google Scholar
Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci 30:14610–14618. https://doi.org/10.1523/jneurosci.1623-10.2010
Article CAS PubMed PubMed Central Google Scholar
Huerta-Ocampo I, Mena-Segovia J, Bolam JP (2014) Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Struct Funct 219:1787–1800. https://doi.org/10.1007/s00429-013-0601-z
Groves PM (1980) Synaptic endings and their postsynaptic targets in neostriatum: synaptic specializations revealed from analysis of serial sections. Proc Natl Acad Sci U S A 77:6926–6929. https://doi.org/10.1073/pnas.77.11.6926
Article CAS PubMed PubMed Central Google Scholar
Wilson CJ, Groves PM, Kitai ST, Linder JC (1983) Three-dimensional structure of dendritic spines in the rat neostriatum. J Neurosci 3:383–388. https://doi.org/10.1523/jneurosci.03-02-00383.1983
Article CAS PubMed PubMed Central Google Scholar
Reichert CF, Deboer T, Landolt HP (2022) Adenosine, caffeine, and sleep-wake regulation: state of the science and perspectives. J Sleep Res 31:e13597. https://doi.org/10.1111/jsr.13597
Article PubMed PubMed Central Google Scholar
Dunwiddie TV, Diao L, Proctor WR (1997) Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17:7673–7682. https://doi.org/10.1523/jneurosci.17-20-07673.1997
Article CAS PubMed PubMed Central Google Scholar
Blutstein T, Haydon PG (2013) The importance of astrocyte-derived purines in the modulation of sleep. Glia 61:129–139. https://doi.org/10.1002/glia.22422
Peng W, Wu Z, Song K, Zhang S, Li Y, Xu M (2020) Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 369:eabb0556. https://doi.org/10.1126/science.abb0556
Article CAS PubMed Google Scholar
Sebastião AM, Ribeiro JA (2015) Neuromodulation and metamodulation by adenosine: impact and subtleties upon synaptic plasticity regulation. Brain Res 1621:102–113. https://doi.org/10.1016/j.brainres.2014.11.008
Article CAS PubMed Google Scholar
Agostinho P, Madeira D, Dias L, Simões AP, Cunha RA, Canas PM (2020) Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res 162:105253. https://doi.org/10.1016/j.phrs.2020.105253
Article CAS PubMed Google Scholar
Simões AP, Machado NJ, Gonçalves N, Kaster MP, Simões AT, Nunes A, Pereira de Almeida L, Goosens KA, Rial D, Cunha RA (2016) Adenosine A(2A) Receptors in the amygdala control synaptic plasticity and contextual fear memory. Neuropsychopharmacology 41:2862–2871. https://doi.org/10.1038/npp.2016.98
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Cao H, Qiu X, Xu D, Chen Y, Barnes GN, Tu Y, Gyabaah AT, Gharbal A, Peng C, Cai J, Cai X (2020) Neuroprotective effects of adenosine A1 receptor signaling on cognitive impairment induced by chronic intermittent hypoxia in mice. Front Cell Neurosci 14:202. https://doi.org/10.3389/fncel.2020.00202
Article CAS PubMed PubMed Central Google Scholar
Lazarus M, Chen JF, Huang ZL, Urade Y, Fredholm BB (2019) Adenosine and sleep. Handb Exp Pharmacol 253:359–381. https://doi.org/10.1007/164_2017_36
Article CAS PubMed Google Scholar
Donlea JM (2017) Neuronal and molecular mechanisms of sleep homeostasis. Curr Opin Insect Sci 24:51–57. https://doi.org/10.1016/j.cois.2017.09.008
Vincenzi F, Pasquini S, Borea PA, Varani K (2020) Targeting adenosine receptors: a potential pharmacological avenue for acute and chronic pain. Int J Mol Sci 21:8710. https://doi.org/10.3390/ijms21228710
Article CAS PubMed PubMed Central Google Scholar
Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487. https://doi.org/10.1016/s0166-2236(97)01096-5
Svenningsson P, Le Moine C, Fisone G, Fredholm BB (1999) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59:355–396. https://doi.org/10.1016/s0301-0082(99)00011-8
Article CAS PubMed Google Scholar
Karuppagounder SS, Uthaythas S, Govindarajulu M, Ramesh S, Parameshwaran K, Dhanasekaran M (2021) Caffeine, a natural methylxanthine nutraceutical, exerts dopaminergic neuroprotection. Neurochem Int 148:105066. https://doi.org/10.1016/j.neuint.2021.105066
留言 (0)