SCH58261 effectively prevents the reduction in excitability of striatal MSNs in mice following 20 h of sleep deprivation

Tononi G, Boly M, Cirelli C (2024) Consciousness and sleep. Neuron 112:1568–1594. https://doi.org/10.1016/j.neuron.2024.04.011

Article  CAS  PubMed  Google Scholar 

V. K. Chattu, M. D. Manzar, S. Kumary, D. Burman, D. W. Spence and S. R. Pandi-Perumal (2018) The global problem of insufficient sleep and its serious public health implications. Healthcare (Basel) 7 https://doi.org/10.3390/healthcare7010001

Luyster FS, Strollo PJ Jr, Zee PC, Walsh JK (2012) Sleep: a health imperative. Sleep 35:727–734. https://doi.org/10.5665/sleep.1846

Article  PubMed  PubMed Central  Google Scholar 

Czeisler CA (2013) Perspective: casting light on sleep deficiency. Nature 497:S13. https://doi.org/10.1038/497S13a

Article  CAS  PubMed  Google Scholar 

Liew SC, Aung T (2021) Sleep deprivation and its association with diseases- a review. Sleep Med 77:192–204. https://doi.org/10.1016/j.sleep.2020.07.048

Article  PubMed  Google Scholar 

Hudson AN, Van Dongen HPA, Honn KA (2020) Sleep deprivation, vigilant attention, and brain function: a review. Neuropsychopharmacology 45:21–30. https://doi.org/10.1038/s41386-019-0432-6

Article  PubMed  Google Scholar 

Musiek ES, Holtzman DM (2016) Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 354:1004–1008. https://doi.org/10.1126/science.aah4968

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tuan LH, Yeh JW, Lee LJ, Lee LJ (2023) Sleep deprivation induces dopamine system maladaptation and escalated corticotrophin-releasing factor signaling in adolescent mice. Mol Neurobiol 60:3190–3209. https://doi.org/10.1007/s12035-023-03258-2

Article  CAS  PubMed  Google Scholar 

Kemp JM, Powell TP (1971) The structure of the caudate nucleus of the cat: light and electron microscopy. Philos Trans R Soc Lond B Biol Sci 262:383–401. https://doi.org/10.1098/rstb.1971.0102

Article  CAS  PubMed  Google Scholar 

Glass M, Dragunow M, Faull RL (2000) The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 97:505–519. https://doi.org/10.1016/s0306-4522(00)00008-7

Article  CAS  PubMed  Google Scholar 

Chang HT, Wilson CJ, Kitai ST (1982) A Golgi study of rat neostriatal neurons: light microscopic analysis. J Comp Neurol 208:107–126. https://doi.org/10.1002/cne.902080202

Article  CAS  PubMed  Google Scholar 

Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci 30:14610–14618. https://doi.org/10.1523/jneurosci.1623-10.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huerta-Ocampo I, Mena-Segovia J, Bolam JP (2014) Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Struct Funct 219:1787–1800. https://doi.org/10.1007/s00429-013-0601-z

Article  PubMed  Google Scholar 

Groves PM (1980) Synaptic endings and their postsynaptic targets in neostriatum: synaptic specializations revealed from analysis of serial sections. Proc Natl Acad Sci U S A 77:6926–6929. https://doi.org/10.1073/pnas.77.11.6926

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson CJ, Groves PM, Kitai ST, Linder JC (1983) Three-dimensional structure of dendritic spines in the rat neostriatum. J Neurosci 3:383–388. https://doi.org/10.1523/jneurosci.03-02-00383.1983

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reichert CF, Deboer T, Landolt HP (2022) Adenosine, caffeine, and sleep-wake regulation: state of the science and perspectives. J Sleep Res 31:e13597. https://doi.org/10.1111/jsr.13597

Article  PubMed  PubMed Central  Google Scholar 

Dunwiddie TV, Diao L, Proctor WR (1997) Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17:7673–7682. https://doi.org/10.1523/jneurosci.17-20-07673.1997

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blutstein T, Haydon PG (2013) The importance of astrocyte-derived purines in the modulation of sleep. Glia 61:129–139. https://doi.org/10.1002/glia.22422

Article  PubMed  Google Scholar 

Peng W, Wu Z, Song K, Zhang S, Li Y, Xu M (2020) Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 369:eabb0556. https://doi.org/10.1126/science.abb0556

Article  CAS  PubMed  Google Scholar 

Sebastião AM, Ribeiro JA (2015) Neuromodulation and metamodulation by adenosine: impact and subtleties upon synaptic plasticity regulation. Brain Res 1621:102–113. https://doi.org/10.1016/j.brainres.2014.11.008

Article  CAS  PubMed  Google Scholar 

Agostinho P, Madeira D, Dias L, Simões AP, Cunha RA, Canas PM (2020) Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res 162:105253. https://doi.org/10.1016/j.phrs.2020.105253

Article  CAS  PubMed  Google Scholar 

Simões AP, Machado NJ, Gonçalves N, Kaster MP, Simões AT, Nunes A, Pereira de Almeida L, Goosens KA, Rial D, Cunha RA (2016) Adenosine A(2A) Receptors in the amygdala control synaptic plasticity and contextual fear memory. Neuropsychopharmacology 41:2862–2871. https://doi.org/10.1038/npp.2016.98

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Cao H, Qiu X, Xu D, Chen Y, Barnes GN, Tu Y, Gyabaah AT, Gharbal A, Peng C, Cai J, Cai X (2020) Neuroprotective effects of adenosine A1 receptor signaling on cognitive impairment induced by chronic intermittent hypoxia in mice. Front Cell Neurosci 14:202. https://doi.org/10.3389/fncel.2020.00202

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lazarus M, Chen JF, Huang ZL, Urade Y, Fredholm BB (2019) Adenosine and sleep. Handb Exp Pharmacol 253:359–381. https://doi.org/10.1007/164_2017_36

Article  CAS  PubMed  Google Scholar 

Donlea JM (2017) Neuronal and molecular mechanisms of sleep homeostasis. Curr Opin Insect Sci 24:51–57. https://doi.org/10.1016/j.cois.2017.09.008

Article  PubMed  Google Scholar 

Vincenzi F, Pasquini S, Borea PA, Varani K (2020) Targeting adenosine receptors: a potential pharmacological avenue for acute and chronic pain. Int J Mol Sci 21:8710. https://doi.org/10.3390/ijms21228710

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487. https://doi.org/10.1016/s0166-2236(97)01096-5

Article  PubMed  Google Scholar 

Svenningsson P, Le Moine C, Fisone G, Fredholm BB (1999) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59:355–396. https://doi.org/10.1016/s0301-0082(99)00011-8

Article  CAS  PubMed  Google Scholar 

Karuppagounder SS, Uthaythas S, Govindarajulu M, Ramesh S, Parameshwaran K, Dhanasekaran M (2021) Caffeine, a natural methylxanthine nutraceutical, exerts dopaminergic neuroprotection. Neurochem Int 148:105066. https://doi.org/10.1016/j.neuint.2021.105066

Article 

留言 (0)

沒有登入
gif