Transthyretin, a novel prognostic marker of POCD revealed by time-series RNA-sequencing analysis

Migirov A, Chahar P, Maheshwari K. Postoperative delirium and neurocognitive disorders. Curr Opin Crit Care. 2021;27:686–93.

Article  PubMed  Google Scholar 

Glumac S, Kardum G, Sodic L, Bulat C, Covic I, Carev M, et al. Longitudinal assessment of preoperative dexamethasone administration on cognitive function after cardiac surgery: a 4-year follow-up of a randomized controlled trial. BMC Anesthesiol. 2021;21:129.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borchers F, Spies CD, Feinkohl I, Brockhaus W-R, Kraft A, Kozma P, et al. Methodology of measuring postoperative cognitive dysfunction: a systematic review. Br J Anaesth. 2021;126:1119–27.

Article  PubMed  Google Scholar 

Safavynia SA, Goldstein PA. The role of neuroinflammation in postoperative cognitive dysfunction: moving from hypothesis to treatment. Front Psychiatry. 2019;9:752.

Article  PubMed  PubMed Central  Google Scholar 

Skvarc DR, Berk M, Byrne LK, Dean OM, Dodd S, Lewis M, et al. Post-operative cognitive dysfunction: an exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev. 2018;84:116–33.

Article  PubMed  Google Scholar 

Zhu Y-Z, Yao R, Zhang Z, Xu H, Wang L-W. Parecoxib prevents early postoperative cognitive dysfunction in elderly patients undergoing total knee arthroplasty: a double-blind, randomized clinical consort study. Medicine. 2016;95:e4082.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu Y, Yao R, Li Y, Wu C, Heng L, Zhou M, et al. Protective effect of celecoxib on early postoperative cognitive dysfunction in geriatric patients. Front Neurol. 2018;9:633.

Article  PubMed  PubMed Central  Google Scholar 

Ottens TH, Dieleman JM, Sauër A-MC, Peelen LM, Nierich AP, de Groot WJ, et al. Effects of dexamethasone on cognitive decline after cardiac surgery: a randomized clinical trial. Anesthesiology. 2014;121:492–500.

Article  CAS  PubMed  Google Scholar 

Magalhães J, Eira J, Liz MA. The role of transthyretin in cell biology: Impact on human pathophysiology. Cell Mol Life Sci. 2021;78:6105–17.

Article  PubMed  PubMed Central  Google Scholar 

Giannocco G, Kizys MML, Maciel RM, de Souza JS. Thyroid hormone, gene expression, and Central Nervous System: Where we are. Semin Cell Dev Biol. 2021;114:47–56.

Siddiqi OK, Ruberg FL. Cardiac amyloidosis: an update on pathophysiology, diagnosis, and treatment. Trends Cardiovasc Med. 2018;28:10–21.

Article  CAS  PubMed  Google Scholar 

Palha JA, Episkopou V, Maeda S, Shimada K, Gottesman ME, Saraiva M. Thyroid hormone metabolism in a transthyretin-null mouse strain. J Biol Chem. 1994;269:33135–9.

Article  CAS  PubMed  Google Scholar 

van Bennekum AM, Wei S, Gamble MV, Vogel S, Piantedosi R, Gottesman M, et al. Biochemical basis for depressed serum retinol levels in transthyretin-deficient mice. J Biol Chem. 2001;276:1107–13.

Article  Google Scholar 

Refetoff S. Defects of thyroid hormone transport in serum. Endotext [Internet] 2023.

Gomes J, Nogueira R, Vieira M, Santos S, Ferraz-Nogueira J, Relvas J, et al. Transthyretin provides trophic support via megalin by promoting neurite outgrowth and neuroprotection in cerebral ischemia. Cell Death Differ. 2016;23:1749–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vieira M, Leal SS, Gomes CM, Saraiva MJ. Evidence for synergistic action of transthyretin and IGF-I over the IGF-I receptor. Biochim Biophys Acta. 2016;1862:797–804.

Article  CAS  PubMed  Google Scholar 

Zhou L, Tang X, Li X, Bai Y, Buxbaum JN, Chen G. Identification of transthyretin as a novel interacting partner for the δ subunit of GABAA receptors. PLoS One. 2019;14:e0210094.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Masliah E, Reixach N, Buxbaum JN. Neuronal production of transthyretin in human and murine Alzheimer’s disease: is it protective? J Neurosci. 2011;31:12483–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serot J, Christmann D, Dubost T, Couturier M. Cerebrospinal fluid transthyretin: aging and late onset Alzheimer’s disease. J Neurol, Neurosurg Psychiatry. 1997;63:506–8.

Article  CAS  PubMed  Google Scholar 

A Ribeiro C, Santana I, Oliveira C, Baldeiras I, Moreira J, et al. Transthyretin decrease in plasma of MCI and AD patients: investigation of mechanisms for disease modulation. Curr Alzheimer Res. 2012;9:881–9.

Article  Google Scholar 

Gião T, Saavedra J, Cotrina E, Quintana J, Llop J, Arsequell G, et al. Undiscovered roles for transthyretin: from a transporter protein to a new therapeutic target for Alzheimer’s disease. Int J Mol Sci. 2020;21:2075.

Article  PubMed  PubMed Central  Google Scholar 

Kotekar N, Shenkar A, Hegde AA. Anesthesia Issues in Geriatrics. In: Goudra B, editors. Anesthesiology. Springer, Cham; 2018. p 795–825.

Schaefer ST, Koenigsperger S, Olotu C, Saller T. Biomarkers and postoperative cognitive function: could it be that easy? Curr Opin Anesthesiol. 2019;32:92–100.

Article  Google Scholar 

Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M, Koliwad SK. Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI insight. 2017;2:e91229.

Article  PubMed  PubMed Central  Google Scholar 

Qiu L-L, Pan W, Luo D, Zhang G-F, Zhou Z-Q, Sun X-Y, et al. Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca2+/calpain might contribute to postoperative cognitive dysfunction in aging mice. J Neuroinflammation. 2020;17:1–15.

Article  Google Scholar 

Lai Z, Shan W, Li J, Min J, Zeng X, Zuo Z. Appropriate exercise level attenuates gut dysbiosis and valeric acid increase to improve neuroplasticity and cognitive function after surgery in mice. Mol Psychiatry. 2021;26:7167–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han X, Cheng X, Xu J, Liu Y, Zhou J, Jiang L, et al. Activation of TREM2 attenuates neuroinflammation via PI3K/Akt signaling pathway to improve postoperative cognitive dysfunction in mice. Neuropharmacology. 2022;219:109231.

Article  CAS  PubMed  Google Scholar 

Liang X, Liu T, Li L, Li J, Li S, Zeng K, et al. Translational selenium nanotherapeutics counter-acts multiple risk factors to improve surgery-induced cognitive impairment. Chem Eng J. 2022;441:135984.

Article  CAS  Google Scholar 

Liang X, Xue Z, Zheng Y, Li S, Zhou L, Cao L, et al. Selenium supplementation enhanced the expression of selenoproteins in hippocampus and played a neuroprotective role in LPS-induced neuroinflammation. Int J Biol Macromol. 2023;234:123740.

Article  CAS  PubMed  Google Scholar 

Zhang Q, Li S-Z, Feng C-s, Qu X-D, Hui W, Zhang X-N, et al. Serum proteomics of early postoperative cognitive dysfunction in elderly patients. Chin Med J. 2012;125:2455–61.

CAS  PubMed  Google Scholar 

Wu B, Liu J, Zhao R, Li Y, Peer J, Braun AL, et al. Glutaminase 1 regulates the release of extracellular vesicles during neuroinflammation through key metabolic intermediate alpha-ketoglutarate. J Neuroinflammation. 2018;15:1–14.

Article  Google Scholar 

Fleming CE, Mar FM, Franquinho F, Saraiva MJ, Sousa MM. Transthyretin internalization by sensory neurons is megalin mediated and necessary for its neuritogenic activity. J Neurosci. 2009;29:3220–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng H, Bria A, Zhou Z, Iannello G, Long F. Extensible visualization and analysis for multidimensional images using Vaa3D. Nat Protoc. 2014;9:193–208.

Article  CAS  PubMed  Google Scholar 

Yu B, Liu J, Su M, Wang C, Chen H, Zhao C. Disruption of Foxg1 impairs neural plasticity leading to social and cognitive behavioral defects. Mol Brain. 2019;12:1–12.

Article  Google Scholar 

Wang S, Li W, Hu L, Cheng J, Yang H, Liu Y. NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses. Nucleic Acids Res. 2020;48:e83.

留言 (0)

沒有登入
gif