Covariation of corticospinal excitability and the autonomous nervous system by virtual reality: the roller coaster effect

Adamovich SV, Fluet GG, Tunik E, Merians AS (2009) Sensorimotor training in virtual reality: a review. NeuroRehabilitation 25(1):29–44. https://doi.org/10.3233/NRE-2009-0497

Article  PubMed  PubMed Central  Google Scholar 

Ashiri M, Lithgow B, Suleiman A, Blakley B, Mansouri B, Moussavi Z (2020) Differences between physical vs. virtual evoked vestibular responses. Ann Biomed Eng 48(4):1241–1255. https://doi.org/10.1007/s10439-019-02446-3

Article  PubMed  Google Scholar 

Ballester BR, Nirme J, Camacho I, Duarte E, Rodríguez S, Cuxart A, Duff A, Verschure PFMJ (2017) Domiciliary Vr-based therapy for functional recovery and cortical reorganization: Randomized controlled trial in participants at the chronic stage post stroke. JMIR Serious Games 5(3):1–12. https://doi.org/10.2196/games.6773

Article  Google Scholar 

Bastiaansen M, Oosterholt M, Mitas O, Han D, Lub X (2022a) An emotional Roller Coaster: electrophysiological evidence of Emotional Engagement during a roller-coaster ride with virtual reality Add-On. J Hospitality Tourism Res 46(1):29–54. https://doi.org/10.1177/1096348020944436/ASSET/IMAGES/LARGE/10.1177_1096348020944436-FIG2.JPEG

Article  Google Scholar 

Baudry S, Duchateau J (2021) Changes in corticospinal excitability during the preparation phase of ballistic and ramp contractions. J Physiol 599(5):1551–1566. https://doi.org/10.1113/JP281093

Article  CAS  PubMed  Google Scholar 

Baumgartner T, Valko L, Esslen M, Jäncke L (2006) Neural correlate of spatial presence in an arousing and noninteractive virtual reality: an EEG and psychophysiology study. Cyberpsychology Behav 9(1):30–45. https://doi.org/10.1089/cpb.2006.9.30

Article  Google Scholar 

Baumgartner T, Willi M, Jäncke L (2007) Modulation of corticospinal activity by strong emotions evoked by pictures and classical music: a transcranial magnetic stimulation study. NeuroReport 18(3):261–265. https://doi.org/10.1097/WNR.0B013E328012272E

Article  PubMed  Google Scholar 

Billman GE (2013) The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. In frontiers in physiology: 4 FEB. Front Physiol. https://doi.org/10.3389/fphys.2013.00026

Article  PubMed  PubMed Central  Google Scholar 

Blum J, Rockstroh C, Göritz AS (2019) Heart rate variability biofeedback based on slow-paced breathing with immersive virtual reality nature scenery. Front Psychol 10(SEP). https://doi.org/10.3389/fpsyg.2019.02172

Borgomaneri S, Vitale F, Gazzola V, Avenanti A (2015) Seeing fearful body language rapidly freezes the observer’s motor cortex. Cortex 65:232–245. https://doi.org/10.1016/j.cortex.2015.01.014

Article  PubMed  Google Scholar 

Buetler KA, Penalver-Andres J, Özen Ö, Ferriroli L, Müri RM, Cazzoli D, Marchal-Crespo L (2022) Tricking the Brain using immersive virtual reality: modifying the self-perception over embodied avatar influences motor cortical excitability and action initiation. Front Hum Neurosci 15. https://doi.org/10.3389/fnhum.2021.787487

Calabrò RS, Naro A, Russo M, Leo A, De Luca R, Balletta T, Buda A, La Rosa G, Bramanti A, Bramanti P (2017) The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. J Neuroeng Rehabil 14(1):1–16. https://doi.org/10.1186/s12984-017-0268-4

Article  Google Scholar 

Carrozzino M, Bergamasco M (2010) Beyond virtual museums: experiencing immersive virtual reality in real museums. J Cult Herit 11(4):452–458. https://doi.org/10.1016/J.CULHER.2010.04.001

Article  Google Scholar 

Carvalho KN, Pearlson GD, Astur RS, Calhoun VD (2006) Simulated driving and brain imaging: Combining behavior, brain activity, and virtual reality. In CNS Spectrums (Vol. 11, Issue 1, pp. 52–62). MBL Communications. https://doi.org/10.1017/S1092852900024214

Cygankiewicz I, Zareba W (2013) Heart rate variability. Handb Clin Neurol 117:379–393. https://doi.org/10.1016/B978-0-444-53491-0.00031-6

Article  PubMed  Google Scholar 

Djebbara Z, Fich LB, Petrini L, Gramann K (2019) Sensorimotor brain dynamics reflect architectural affordances. Proc Natl Acad Sci USA 116(29):14769–14778. https://doi.org/10.1073/pnas.1900648116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eftekharifar S, Thaler A, Bebko AO, Troje NF (2021) The role of binocular disparity and active motion parallax in cybersickness. Exp Brain Res 239(8):2649–2660. https://doi.org/10.1007/S00221-021-06124-6

Article  PubMed  Google Scholar 

Fadeev KA, Smirnov AS, Zhigalova OP, Bazhina PS, Tumialis AV, Golokhvast KS (2020a) Too Real to Be Virtual: Autonomic and EEG Responses to Extreme Stress Scenarios in Virtual Reality. Behavioural Neurology, 2020. https://doi.org/10.1155/2020/5758038

Fan H, Luo Z (2022) Functional integration of mirror neuron system and sensorimotor cortex under virtual self-actions visual perception. Behav Brain Res 423. https://doi.org/10.1016/j.bbr.2022.113784

Faure C, Limballe A, Bideau B, Kulpa R (2020) Virtual reality to assess and train team ball sports performance: a scoping review. J Sports Sci 38(2):192–205. https://doi.org/10.1080/02640414.2019.1689807

Article  PubMed  Google Scholar 

Feng H, Li C, Liu J, Wang L, Ma J, Li G, Gan L, Shang X, Wu Z (2019) Virtual reality Rehabilitation Versus Conventional Physical Therapy for improving Balance and Gait in Parkinson’s Disease patients: a Randomized Controlled Trial. Med Sci Monitor: Int Med J Experimental Clin Res 25:4186–4192. https://doi.org/10.12659/MSM.916455

Article  Google Scholar 

Gavgani AM, Walker FR, Hodgson DM, Nalivaiko E (2018a) A comparative study of cybersickness during exposure to virtual reality and classic motion sickness: are they different? J Appl Physiol (Bethesda Md: 1985) 125(6):1670–1680. https://doi.org/10.1152/JAPPLPHYSIOL.00338.2018

Article  Google Scholar 

Gavgani AM, Wong RHX, Howe PRC, Hodgson DM, Walker FR, Nalivaiko E (2018b) Cybersickness-related changes in brain hemodynamics: a pilot study comparing transcranial Doppler and near-infrared spectroscopy assessments during a virtual ride on a roller coaster. Physiol Behav 191:56–64. https://doi.org/10.1016/j.physbeh.2018.04.007

Giovannelli F, Banfi C, Borgheresi A, Fiori E, Innocenti I, Rossi S, Zaccara G, Viggiano MP, Cincotta M (2013) The effect of music on corticospinal excitability is related to the perceived emotion: a transcranial magnetic stimulation study. Cortex 49(3):702–710. https://doi.org/10.1016/j.cortex.2012.01.013

Article  PubMed  Google Scholar 

Gökdemir S, Gündüz A, Özkara Ç, Kızıltan ME (2018) Fear-conditioned alterations of motor cortex excitability: the role of amygdala. Neurosci Lett 662(October 2017):346–350. https://doi.org/10.1016/j.neulet.2017.10.059

Article  CAS  PubMed  Google Scholar 

Grapperon J, Pignol A-C, Vion-Dury J (2012) The measurement of electrodermal activity. L’Encephale 38(2):149–155. https://doi.org/10.1016/j.encep.2011.05.004

Grassini S, Laumann K, de Martin Topranin V, Thorp S (2021) Evaluating the effect of multi-sensory stimulations on simulator sickness and sense of presence during HMD-mediated VRexperience. Ergonomics 64(12):1532–1542. https://doi.org/10.1080/00140139.2021.1941279

Grosprêtre S, Eon P, Marcel-Millet P (2023) Virtual reality does not fool the brain only: spinal excitability changes during virtually simulated falling. J Neurophysiol 129(2):368–379. https://doi.org/10.1152/jn.00383.2022

Article  PubMed  Google Scholar 

Hodgson DD, King JA, Darici O, Dalton BH, Cleworth TW, Cluff T, Peters RM (2023) Visual feedback-dependent modulation of arousal, postural control, and muscle stretch reflexes assessed in real and virtual environments. Front Hum Neurosci 17. https://doi.org/10.3389/FNHUM.2023.1128548

Im H, Ku J, Kim HJ, Kang YJ (2016) Virtual reality-guided motor imagery increases corticomotor excitability in healthy volunteers and stroke patients. Annals Rehabilitation Med 40(3):420–431. https://doi.org/10.5535/arm.2016.40.3.420

Article  Google Scholar 

Indovina I, Mazzarella E, Maffei V, Cesqui B, Passamonti L, Lacquaniti F (2015) Sound-evoked vestibular stimulation affects the anticipation of gravity effects during visual self-motion. Exp Brain Res 233(8):2365–2371. https://doi.org/10.1007/S00221-015-4306-9

Article  PubMed  Google Scholar 

Jäncke L, Cheetham M, Baumgartner T (2009) Virtual reality and the role of the prefrontal cortex in adults and children. Front NeuroSci 3(1):52–59. https://doi.org/10.3389/NEURO.01.006.2009

Article  PubMed  PubMed Central  Google Scholar 

Kang YJ, Park HK, Kim HJ, Lim T, Ku J, Cho S, Kim SI, Park ES (2012) Upper extremity rehabilitation of stroke: facilitation of corticospinal excitability using virtual mirror paradigm. J Neuroeng Rehabil 9(1):1. https://doi.org/10.1186/1743-0003-9-71

Article  Google Scholar 

Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator Sickness Questionnaire: an enhanced method for quantifying Simulator sickness. Int J Aviat Psychol 3(3):203–220. https://doi.org/10.1207/S15327108IJAP0303_3

Article  Google Scholar 

Kiernan MC, Lin CS-Y, Burke D (2004) Differences in activity-dependent hyperpolarization in human sensory and motor axons. J Physiol 558(Pt 1):341–349. https://doi.org/10.1113/jphysiol.2004.063966

Kim YJ, Ku J, Cho S, Kim HJ, Cho YK, Lim T, Kang YJ (2014) Facilitation of corticospinal excitability by virtual reality exercise following anodal transcranial direct current stimulation in healthy volunteers and subacute stroke subjects. J Neuroeng Rehabil 11(1). https://doi.org/10.1186/1743-0003-11-124

Liu Q, Zhang W (2020) Sex differences in stress reactivity to the trier social stress test in virtual reality. Psychol Res Behav Manage 13:859–869. https://doi.org/10.2147/PRBM.S268039

Article  Google Scholar 

Marsac J (2013) Heart rate variability: a cardiometabolic risk marker with public health implications. Bull Acad Natl Med 197(1):175–186. https://doi.org/10.1016/s0001-4079(19)31635-8

Molander B, Olsson CJ, Stenling A, Borg E (2013) Regulating force in putting by using the borg cr100 scale®. Front Psychol 4(FEB). https://doi.org/10.3389/fpsyg.2013.00082

Nalivaiko E, Davis SL, Blackmore KL, Vakulin A, Nesbitt KV (2015) Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiol Behav 151:583–590. https://doi.org/10.1016/j.physbeh.2015.08.043

Article  CAS  PubMed  Google Scholar 

Nunan D, Sandercock GRH, Brodie DA (2010) A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin Electrophysiol 33(11):1407–1417. https://doi.org/10.1111/j.1540-8159.2010.02841.x

Parsons TD, Rizzo AA (2008) Affective outcomes of virtual reality exposure therapy for anxiety and specific phobias: a meta-analysis. J Behav Ther Exp Psychiatry 39(3):250–261. https://doi.org/10.1016/J.JBTEP.2007.07.007

Article

留言 (0)

沒有登入
gif