Photoperiod-driven testicular DNA methylation in gonadotropin and sex steroid receptor promoters in Siberian hamsters

Ai Y, Jing S, Cheng Z et al (2021) DNA methylation affects photoperiodic tuberization in potato (Solanum tuberosum L.) by mediating the expression of genes related to the photoperiod and GA pathways. Hortic Res 8:181. https://doi.org/10.1038/s41438-021-00619-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alvarado S, Mak T, Liu S et al (2015) Dynamic changes in global and gene-specific DNA methylation during hibernation in adult thirteen-lined ground squirrels, Ictidomys tridecemlineatus. J Exp Biol 218:1787–1795. https://doi.org/10.1242/jeb.116046

Article  PubMed  Google Scholar 

Anand S, Losee-Olson S, Turek FW, Horton TH (2002) Differential regulation of luteinizing hormone and follicle-stimulating hormone in male siberian hamsters by exposure to females and photoperiod. Endocrinol 143:2178–2188. https://doi.org/10.1210/endo.143.6.8839

Article  CAS  Google Scholar 

Aston KI, Uren PJ, Jenkins TG et al (2015) Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil Steril 104:1388-97.e1–5. https://doi.org/10.1016/j.fertnstert.2015.08.019

Babayev SN, Park CW, Keller PW et al (2017) Androgens upregulate endometrial epithelial progesterone receptor expression: potential implications for endometriosis. Reproductive Sci 24:1454–1461. https://doi.org/10.1177/1933719117691145

Article  CAS  Google Scholar 

Bartke A, Chandrashekar V, Amador AG (1990) Differential effects of short photoperiod on the release of progesterone and testosterone by hamster testes in vitro. J Biol Rhythms 5:241–246. https://doi.org/10.1177/074873049000500305

Article  CAS  PubMed  Google Scholar 

Bédécarrats GY (2015) Control of the reproductive axis: balancing act between stimulatory and inhibitory input. Poult Sci 94:810–815. https://doi.org/10.3382/ps/peu042

Article  CAS  PubMed  Google Scholar 

Beltrán-Frutos E, Seco-Rovira V, Martínez-Hernández J et al (2022) Cellular modifications in spermatogenesis during Seasonal Testicular regression: an Update Review in mammals. Anim (Basel) 12. https://doi.org/10.3390/ani12131605

Borah BK, Renthlei Z, Tripathi A, Trivedi AK (2022) Molecular and epigenetic regulation of seasonal reproduction in Terai tree frog (Polypedates teraiensis). Photochem Photobiol Sci 21:1067–1076. https://doi.org/10.1007/s43630-022-00195-2

Article  CAS  PubMed  Google Scholar 

Cortijo S, Wardenaar R, Colomé-Tatché M et al (2014) Mapping the epigenetic basis of complex traits. Science 343:1145–1148. https://doi.org/10.1126/science.1248127

Article  CAS  PubMed  Google Scholar 

Coyle CS, Caso F, Tolla E et al (2020) Ovarian hormones induce de novo DNA methyltransferase expression in the siberian hamster suprachiasmatic nucleus. J Neuroendocrinol 32:e12819. https://doi.org/10.1111/jne.12819

Article  CAS  PubMed  Google Scholar 

De Bond J-AP, Smith JT (2014) Kisspeptin and energy balance in reproduction. Reproduction 147:R53–63. https://doi.org/10.1530/REP-13-0509

Article  CAS  PubMed  Google Scholar 

Duncan MJ, Goldman BD (1984) Hormonal regulation of the annual pelage color cycle in the djungarian hamster, Phodopus sungorus. II. Role of prolactin. J Exp Zool 230:97–103. https://doi.org/10.1002/jez.1402300113

Article  CAS  PubMed  Google Scholar 

Dura M, Teissandier A, Armand M et al (2022a) DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit to spermatogenesis. Nat Genet 54:469–480. https://doi.org/10.1038/s41588-022-01040-z

Article  CAS  PubMed  Google Scholar 

Dura M, Teissandier A, Armand M et al (2022b) DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit to spermatogenesis. Nat Genet 54:469–480. https://doi.org/10.1038/s41588-022-01040-z

Article  CAS  PubMed  Google Scholar 

El-Hefnawy T, Huhtaniemi IT (1999) Progesterone and testicular function. Aging Male 2:240–245. https://doi.org/10.3109/13685539909042351

Article  Google Scholar 

Elliott JA, Stetson MH, Menaker M (1972) Regulation of testis function in golden hamsters: a circadian clock measures photoperiodic time. Science 178:771–773. https://doi.org/10.1126/science.178.4062.771

Article  CAS  PubMed  Google Scholar 

Fadlalla MB, Wei Q, Fedail JS et al (2017) Effects of hyper- and hypothyroidism on the development and proliferation of testicular cells in prepubertal rats. Anim Sci J 88:1943–1954. https://doi.org/10.1111/asj.12883

Article  CAS  PubMed  Google Scholar 

Gaston S, Menaker M (1967) Photoperiodic control of hamster testis. Science 158:925–928. https://doi.org/10.1126/science.158.3803.925

Article  CAS  PubMed  Google Scholar 

Ge SX, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36:2628–2629. https://doi.org/10.1093/bioinformatics/btz931

Article  CAS  PubMed  Google Scholar 

Giannetto A, Nagasawa K, Fasulo S, Fernandes JMO (2013) Influence of photoperiod on expression of DNA (cytosine-5) methyltransferases in Atlantic Cod. Gene 519:222–230. https://doi.org/10.1016/j.gene.2013.02.028

Article  CAS  PubMed  Google Scholar 

Greives TJ, Mason AO, Scotti M-AL et al (2007) Environmental Control of Kisspeptin: implications for Seasonal Reproduction. Endocrinol 148:1158–1166. https://doi.org/10.1210/en.2006-1249

Article  CAS  Google Scholar 

Griswold MD (1998) The central role of sertoli cells in spermatogenesis. Semin Cell Dev Biol 9:411–416. https://doi.org/10.1006/scdb.1998.0203

Article  CAS  PubMed  Google Scholar 

Gwinner E (2003) Circannual rhythms in birds. Curr Opin Neurobiol 13:770–778. https://doi.org/10.1016/j.conb.2003.10.010

Article  CAS  PubMed  Google Scholar 

Harter CJL, Kavanagh GS, Smith JT (2018) The role of kisspeptin neurons in reproduction and metabolism. J Endocrinol 238:R173–R183. https://doi.org/10.1530/JOE-18-0108

Article  CAS  PubMed  Google Scholar 

He X, Wang W, Sun W, Chu M (2023) Photoperiod induces DNA methylation changes in the melatonin receptor 1A gene in Ewes. Anim (Basel) 13. https://doi.org/10.3390/ani13121917

Hegstrom CD, Breedlove SM (1999) Seasonal plasticity of neuromuscular junctions in adult male siberian hamsters (Phodopus sungorus). Brain Res 819:83–88. https://doi.org/10.1016/S0006-8993(98)01315-8

Article  CAS  PubMed  Google Scholar 

Heideman PD, Bronson FH (1994) An endogenous circannual rhythm of reproduction in a tropical bat, Anoura geoffroyi, is not entrained by photoperiod. Biol Reprod 50:607–614. https://doi.org/10.1095/biolreprod50.3.607

Article  CAS  PubMed  Google Scholar 

Heldmaier G, Steinlechner S, Rafael J, Vsiansky P (1981) Photoperiodic control and effects of melatonin on nonshivering thermogenesis and brown adipose tissue. Science 212:917–919. https://doi.org/10.1126/science.7233183

Article  CAS  PubMed  Google Scholar 

Hervé Pagès (2017) Seth Falcon Nianhua Li MC AnnotationDbi

Huhtaniemi I (2015) A short evolutionary history of FSH-stimulated spermatogenesis. Horm (Athens) 14:468–478. https://doi.org/10.14310/horm.2002.1632

Article  Google Scholar 

Huhtaniemi I (2018) Mechanisms in endocrinology: hormonal regulation of spermatogenesis: mutant mice challenging old paradigms. Eur J Endocrinol 179:R143–R150. https://doi.org/10.1530/EJE-18-0396

Article  CAS  PubMed  Google Scholar 

Kaprara A, Huhtaniemi IT (2017) The hypothalamus-pituitary-gonad axis: tales of mice and men. Metabolism 86:3–17. https://doi.org/10.1016/j.metabol.2017.11.018

Article  CAS  PubMed 

留言 (0)

沒有登入
gif