Abdulraheem MI, Xiong Y, Moshood AY, Cadenas-Pliego G, Zhang H, Hu J (2024) Mechanisms of Plant Epigenetic Regulation in response to plant stress: recent discoveries and implications. Plants 13(2): 163. https://doi.org/10.3390/plants13020163
Article CAS PubMed PubMed Central Google Scholar
Ahmad P, Abdel Latef AA, Rasool S, Akram NA, Ashraf M, Gucel S (2016) Role of proteomics in crop stress tolerance. Front Plant Sci 7:1336. https://doi.org/10.3389/fpls.2016.01336
Article PubMed PubMed Central Google Scholar
Akpunarlieva S, Weidt S, Lamasudin D, Naula C, Henderson D, Barrett M, Burgess K, Burchmore R (2017) Integration of proteomics and metabolomics to elucidate metabolic adaptation in Leishmania. J Proteom 155:85–98. https://doi.org/10.1016/j.jprot.2016.12.009
Alseekh S, Fernie AR (2018) Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J 94(6):933–942. https://doi.org/10.1111/tpj.13950
Article CAS PubMed Google Scholar
Amiri-Dashatan N, Koushki M, Abbaszadeh HA, Rostami-Nejad M, Rezaei-Tavirani M (2018) Proteomics applications in Health: Biomarker and Drug Discovery and Food Industry. Iran J Pharm Research: IJPR 17(4):1523–1536
CAS PubMed PubMed Central Google Scholar
Ampong I (2022) Metabolic and Metabolomics insights into dilated cardiomyopathy. Annals Nutr Metabolism 78(3):147–155. https://doi.org/10.1159/000524722
An Y-Q, Ma D-J, Xi Z (2023) Multi-omics Analysis reveals synergistic enhancement of Nitrogen Assimilation Efficiency via Coordinated Regulation of Nitrogen and Carbon Metabolism by Co-application of Brassinolide and Pyraclostrobin in Arabidopsis thaliana. Int J Mol Sci 24(22): 16435. https://doi.org/10.3390/ijms242216435
Article CAS PubMed PubMed Central Google Scholar
Asakura H, Yamakawa T, Tamura T, Ueda R, Taira S, Saito Y, Abe K, Asakura T (2021) Transcriptomic and metabolomic analyses provide insights into the upregulation of fatty acid and Phospholipid Metabolism in Tomato Fruit under Drought stress. J Agric Food Chem 69(9):2894–2905. https://doi.org/10.1021/acs.jafc.0c06168
Article CAS PubMed Google Scholar
Ballhorn DJ (2011) Constraints of simultaneous resistance to a fungal pathogen and an insect herbivore in lima bean (Phaseolus lunatus L). J Chem Ecol 37(2):141–144. https://doi.org/10.1007/s10886-010-9905-0
Article CAS PubMed Google Scholar
Barkla BJ (2016) Identification of Abiotic Stress Protein Biomarkers by proteomic screening of Crop Cultivar Diversity. Proteomes 4(3):26. https://doi.org/10.3390/proteomes4030026
Article CAS PubMed PubMed Central Google Scholar
Bawa G, Liu Z, Zhou Y, Fan S, Ma Q, Tissue DT, Sun X (2022) Cotton proteomics: dissecting the stress response mechanisms in cotton. Front Plant Sci 13:1035801. https://doi.org/10.3389/fpls.2022.1035801
Article PubMed PubMed Central Google Scholar
Beig B, Niazi MBK, Sher F, Jahan Z, Malik US, Khan MD, Américo-Pinheiro JHP, Vo D-VN (2022) Nanotechnology-based controlled release of sustainable fertilizers. A review. Environ Chem Lett 20(4):2709–2726. https://doi.org/10.1007/s10311-022-01409-w
Benjamin JJ, Lucini L, Jothiramshekar S, Parida A (2019) Metabolomic insights into the mechanisms underlying tolerance to salinity in different halophytes. Plant Physiol Biochem 135:528–545. https://doi.org/10.1016/j.plaphy.2018.11.006
Article CAS PubMed Google Scholar
Bisht N, Singh T, Ansari MM, Joshi H, Mishra SK, Chauhan PS (2024) Plant growth-promoting Bacillus amyloliquefaciens orchestrate homeostasis under nutrient deficiency exacerbated drought and salinity stress in Oryza sativa L. seedlings. Planta 261(1):8. https://doi.org/10.1007/s00425-024-04585-x
Article CAS PubMed Google Scholar
Brennan L, Hu FB, Sun Q (2021) Metabolomics meets nutritional epidemiology: harnessing the potential in Metabolomics Data. Metabolites 11(10):709. https://doi.org/10.3390/metabo11100709
Article CAS PubMed PubMed Central Google Scholar
Brockbals L, Ueland M, Fu S, Padula MP (2025) Development and thorough evaluation of a multi-omics sample preparation workflow for comprehensive LC-MS/MS-based metabolomics, lipidomics and proteomics datasets. Talanta 286:127442. https://doi.org/10.1016/j.talanta.2024.127442
Budzinski IGF, de Moraes FE, Cataldi TR, Franceschini LM, Labate CA (2019) Network analyses and Data Integration of Proteomics and Metabolomics from leaves of two contrasting varieties of sugarcane in response to Drought. Front Plant Sci 10:1524. https://doi.org/10.3389/fpls.2019.01524
Article PubMed PubMed Central Google Scholar
Cai X, Yang C, Chen J, Gong W, Yi F, Liao W, Huang R, Xie L, Zhou J (2021) Proteomic insights into susceptibility and resistance to chronic-stress-Induced Depression or anxiety in the rat striatum. Front Mol Biosci 8:730473. https://doi.org/10.3389/fmolb.2021.730473
Article CAS PubMed PubMed Central Google Scholar
Calumpang CLF, Saigo T, Watanabe M, Tohge T (2020) Cross-species comparison of Fruit-Metabolomics to elucidate metabolic regulation of Fruit Polyphenolics among Solanaceous crops. Metabolites 10(5):209. https://doi.org/10.3390/metabo10050209
Article CAS PubMed PubMed Central Google Scholar
Castro-Moretti FR, Gentzel IN, Mackey D, Alonso AP (2020) Metabolomics as an Emerging Tool for the study of Plant-Pathogen interactions. Metabolites 10(2):52. https://doi.org/10.3390/metabo10020052
Article CAS PubMed PubMed Central Google Scholar
Chandran H, Meena M, Barupal T, Sharma K (2020) Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol Rep (Amsterdam Netherlands) 26:e00450. https://doi.org/10.1016/j.btre.2020.e00450
Chen D, Mubeen B, Hasnain A, Rizwan M, Adrees M, Naqvi SAH, Iqbal S, Kamran M, El-Sabrout AM, Elansary HO, Mahmoud EA, Alaklabi A, Sathish M, Din GMU (2022) Role of promising secondary metabolites to Confer Resistance Against Environmental Stresses in crop plants: current scenario and future perspectives. Front Plant Sci 13:881032. https://doi.org/10.3389/fpls.2022.881032
Article PubMed PubMed Central Google Scholar
Christie-Oleza JA, Fernandez B, Nogales B, Bosch R, Armengaud J (2012) Proteomic insights into the lifestyle of an environmentally relevant marine bacterium. ISME J 6(1):124–135. https://doi.org/10.1038/ismej.2011.86
Article CAS PubMed Google Scholar
Dalal M, Mansi, Mayandi K (2023) Zoom-in to molecular mechanisms underlying root growth and function under heterogeneous soil environment and abiotic stresses. Planta 258(6):108. https://doi.org/10.1007/s00425-023-04262-5
Article CAS PubMed Google Scholar
Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, Ruan Y-L, Stitt M, Sweetlove LJ, Tegeder M, Wahl V, Sonnewald S, Sonnewald U (2020) Synchronization of developmental, molecular and metabolic aspects of source–sink interactions. Nat Plants 6(2):55–66. https://doi.org/10.1038/s41477-020-0590-x
Foito A, Stewart D (2018) Metabolomics: a high-throughput screen for biochemical and bioactivity diversity in plants and crops. Curr Pharm Design 24(19):2043–2054. https://doi.org/10.2174/1381612824666180515125926
Gao J, Liu Z, Zhao B, Liu P, Zhang J-W (2020) Physiological and comparative proteomic analysis provides new insights into the effects of shade stress in maize (Zea mays L). BMC Plant Biol 20(1):60. https://doi.org/10.1186/s12870-020-2264-2
Article CAS PubMed PubMed Central Google Scholar
Ghorbanzadeh Z, Hamid R, Jacob F, Zeinalabedini M, Salekdeh GH, Ghaffari MR (2023) Comparative metabolomics of root-tips reveals distinct metabolic pathways conferring drought tolerance in contrasting genotypes of rice. BMC Genomics 24(1):152. https://doi.org/10.1186/s12864-023-09246-z
留言 (0)