Deciphering nutrient stress in plants: integrative insight from metabolomics and proteomics

Abdulraheem MI, Xiong Y, Moshood AY, Cadenas-Pliego G, Zhang H, Hu J (2024) Mechanisms of Plant Epigenetic Regulation in response to plant stress: recent discoveries and implications. Plants 13(2): 163. https://doi.org/10.3390/plants13020163

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmad P, Abdel Latef AA, Rasool S, Akram NA, Ashraf M, Gucel S (2016) Role of proteomics in crop stress tolerance. Front Plant Sci 7:1336. https://doi.org/10.3389/fpls.2016.01336

Article  PubMed  PubMed Central  Google Scholar 

Akpunarlieva S, Weidt S, Lamasudin D, Naula C, Henderson D, Barrett M, Burgess K, Burchmore R (2017) Integration of proteomics and metabolomics to elucidate metabolic adaptation in Leishmania. J Proteom 155:85–98. https://doi.org/10.1016/j.jprot.2016.12.009

Article  CAS  Google Scholar 

Alseekh S, Fernie AR (2018) Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J 94(6):933–942. https://doi.org/10.1111/tpj.13950

Article  CAS  PubMed  Google Scholar 

Amiri-Dashatan N, Koushki M, Abbaszadeh HA, Rostami-Nejad M, Rezaei-Tavirani M (2018) Proteomics applications in Health: Biomarker and Drug Discovery and Food Industry. Iran J Pharm Research: IJPR 17(4):1523–1536

CAS  PubMed  PubMed Central  Google Scholar 

Ampong I (2022) Metabolic and Metabolomics insights into dilated cardiomyopathy. Annals Nutr Metabolism 78(3):147–155. https://doi.org/10.1159/000524722

Article  CAS  Google Scholar 

An Y-Q, Ma D-J, Xi Z (2023) Multi-omics Analysis reveals synergistic enhancement of Nitrogen Assimilation Efficiency via Coordinated Regulation of Nitrogen and Carbon Metabolism by Co-application of Brassinolide and Pyraclostrobin in Arabidopsis thaliana. Int J Mol Sci 24(22): 16435. https://doi.org/10.3390/ijms242216435

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asakura H, Yamakawa T, Tamura T, Ueda R, Taira S, Saito Y, Abe K, Asakura T (2021) Transcriptomic and metabolomic analyses provide insights into the upregulation of fatty acid and Phospholipid Metabolism in Tomato Fruit under Drought stress. J Agric Food Chem 69(9):2894–2905. https://doi.org/10.1021/acs.jafc.0c06168

Article  CAS  PubMed  Google Scholar 

Ballhorn DJ (2011) Constraints of simultaneous resistance to a fungal pathogen and an insect herbivore in lima bean (Phaseolus lunatus L). J Chem Ecol 37(2):141–144. https://doi.org/10.1007/s10886-010-9905-0

Article  CAS  PubMed  Google Scholar 

Barkla BJ (2016) Identification of Abiotic Stress Protein Biomarkers by proteomic screening of Crop Cultivar Diversity. Proteomes 4(3):26. https://doi.org/10.3390/proteomes4030026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bawa G, Liu Z, Zhou Y, Fan S, Ma Q, Tissue DT, Sun X (2022) Cotton proteomics: dissecting the stress response mechanisms in cotton. Front Plant Sci 13:1035801. https://doi.org/10.3389/fpls.2022.1035801

Article  PubMed  PubMed Central  Google Scholar 

Beig B, Niazi MBK, Sher F, Jahan Z, Malik US, Khan MD, Américo-Pinheiro JHP, Vo D-VN (2022) Nanotechnology-based controlled release of sustainable fertilizers. A review. Environ Chem Lett 20(4):2709–2726. https://doi.org/10.1007/s10311-022-01409-w

Article  CAS  Google Scholar 

Benjamin JJ, Lucini L, Jothiramshekar S, Parida A (2019) Metabolomic insights into the mechanisms underlying tolerance to salinity in different halophytes. Plant Physiol Biochem 135:528–545. https://doi.org/10.1016/j.plaphy.2018.11.006

Article  CAS  PubMed  Google Scholar 

Bisht N, Singh T, Ansari MM, Joshi H, Mishra SK, Chauhan PS (2024) Plant growth-promoting Bacillus amyloliquefaciens orchestrate homeostasis under nutrient deficiency exacerbated drought and salinity stress in Oryza sativa L. seedlings. Planta 261(1):8. https://doi.org/10.1007/s00425-024-04585-x

Article  CAS  PubMed  Google Scholar 

Brennan L, Hu FB, Sun Q (2021) Metabolomics meets nutritional epidemiology: harnessing the potential in Metabolomics Data. Metabolites 11(10):709. https://doi.org/10.3390/metabo11100709

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brockbals L, Ueland M, Fu S, Padula MP (2025) Development and thorough evaluation of a multi-omics sample preparation workflow for comprehensive LC-MS/MS-based metabolomics, lipidomics and proteomics datasets. Talanta 286:127442. https://doi.org/10.1016/j.talanta.2024.127442

Article  CAS  Google Scholar 

Budzinski IGF, de Moraes FE, Cataldi TR, Franceschini LM, Labate CA (2019) Network analyses and Data Integration of Proteomics and Metabolomics from leaves of two contrasting varieties of sugarcane in response to Drought. Front Plant Sci 10:1524. https://doi.org/10.3389/fpls.2019.01524

Article  PubMed  PubMed Central  Google Scholar 

Cai X, Yang C, Chen J, Gong W, Yi F, Liao W, Huang R, Xie L, Zhou J (2021) Proteomic insights into susceptibility and resistance to chronic-stress-Induced Depression or anxiety in the rat striatum. Front Mol Biosci 8:730473. https://doi.org/10.3389/fmolb.2021.730473

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calumpang CLF, Saigo T, Watanabe M, Tohge T (2020) Cross-species comparison of Fruit-Metabolomics to elucidate metabolic regulation of Fruit Polyphenolics among Solanaceous crops. Metabolites 10(5):209. https://doi.org/10.3390/metabo10050209

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castro-Moretti FR, Gentzel IN, Mackey D, Alonso AP (2020) Metabolomics as an Emerging Tool for the study of Plant-Pathogen interactions. Metabolites 10(2):52. https://doi.org/10.3390/metabo10020052

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandran H, Meena M, Barupal T, Sharma K (2020) Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol Rep (Amsterdam Netherlands) 26:e00450. https://doi.org/10.1016/j.btre.2020.e00450

Article  Google Scholar 

Chen D, Mubeen B, Hasnain A, Rizwan M, Adrees M, Naqvi SAH, Iqbal S, Kamran M, El-Sabrout AM, Elansary HO, Mahmoud EA, Alaklabi A, Sathish M, Din GMU (2022) Role of promising secondary metabolites to Confer Resistance Against Environmental Stresses in crop plants: current scenario and future perspectives. Front Plant Sci 13:881032. https://doi.org/10.3389/fpls.2022.881032

Article  PubMed  PubMed Central  Google Scholar 

Christie-Oleza JA, Fernandez B, Nogales B, Bosch R, Armengaud J (2012) Proteomic insights into the lifestyle of an environmentally relevant marine bacterium. ISME J 6(1):124–135. https://doi.org/10.1038/ismej.2011.86

Article  CAS  PubMed  Google Scholar 

Dalal M, Mansi, Mayandi K (2023) Zoom-in to molecular mechanisms underlying root growth and function under heterogeneous soil environment and abiotic stresses. Planta 258(6):108. https://doi.org/10.1007/s00425-023-04262-5

Article  CAS  PubMed  Google Scholar 

Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, Ruan Y-L, Stitt M, Sweetlove LJ, Tegeder M, Wahl V, Sonnewald S, Sonnewald U (2020) Synchronization of developmental, molecular and metabolic aspects of source–sink interactions. Nat Plants 6(2):55–66. https://doi.org/10.1038/s41477-020-0590-x

Article  PubMed  Google Scholar 

Foito A, Stewart D (2018) Metabolomics: a high-throughput screen for biochemical and bioactivity diversity in plants and crops. Curr Pharm Design 24(19):2043–2054. https://doi.org/10.2174/1381612824666180515125926

Article  CAS  Google Scholar 

Gao J, Liu Z, Zhao B, Liu P, Zhang J-W (2020) Physiological and comparative proteomic analysis provides new insights into the effects of shade stress in maize (Zea mays L). BMC Plant Biol 20(1):60. https://doi.org/10.1186/s12870-020-2264-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghorbanzadeh Z, Hamid R, Jacob F, Zeinalabedini M, Salekdeh GH, Ghaffari MR (2023) Comparative metabolomics of root-tips reveals distinct metabolic pathways conferring drought tolerance in contrasting genotypes of rice. BMC Genomics 24(1):152. https://doi.org/10.1186/s12864-023-09246-z

留言 (0)

沒有登入
gif