Flupyradifurone, imidacloprid and clothianidin disrupt the auditory processing in the locust CNS

Al Naggar Y, Singavarapu B, Paxton RJ, Wubet T (2022) Bees under interactive stressors: the novel insecticides flupyradifurone and sulfoxaflor along with the fungicide azoxystrobin disrupt the gut microbiota of honey bees and increase opportunistic bacterial pathogens. Sci Total Environ 849:157941. https://doi.org/10.1016/j.scitotenv.2022.157941

Article  PubMed  CAS  Google Scholar 

An H, Landis JT, Bailey AG, Marron JS, Dittmer DP (2019) Dr4pl: a stable convergence algorithm for the 4 parameter logistic model. R J 11:171–190. https://doi.org/10.32614/RJ-2019-003

Article  Google Scholar 

Andrés M, Seifert M, Spalthoff C, Warren B, Weiss L, Giraldo D, Winkler M, Pauls S, Göpfert M (2016) Auditory efferent system modulates mosquito hearing. Curr Biol 26:2028–2036. https://doi.org/10.1016/j.cub.2016.05.077

Article  PubMed  CAS  Google Scholar 

Bass C, Denholm I, Williamson MS, Nauen R (2015) The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem Physiol 121:78–87. https://doi.org/10.1016/j.pestbp.2015.04.004

Article  PubMed  CAS  Google Scholar 

Buckingham SD, Lapied B, Le Corronc H, Grolleau F, Sattelle DB (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol 200:2685–2692. https://doi.org/10.1242/jeb.200.21.2685

Article  PubMed  CAS  Google Scholar 

Burrows M (1996) The neurobiology of an insect brain. Oxford University Press

Campbell JW, Cabrera AR, Stanley-Stahr C, Ellis JD (2016) An evaluation of the honey bee (Hymenoptera: Apidae) safety profile of a new systemic insecticide, flupyradifurone, under field conditions in Florida. J Econ Entomol 109:1967–1972. https://doi.org/10.1093/jee/tow186

Article  PubMed  CAS  Google Scholar 

Casida JE (2018) Neonicotinoids and other insect nicotinic receptor competitive modulators: progress and prospects. Annu Rev Entomol 63:125–144. https://doi.org/10.1146/annurev-ento-020117

Article  PubMed  CAS  Google Scholar 

Cillov A, Stumpner A (2022) Local prothoracic auditory neurons in Ensifera. Front Neurosci 16:1087050. https://doi.org/10.3389/fnins.2022.1087050

Article  PubMed  PubMed Central  Google Scholar 

Clemens J, Schöneich S, Kostarakos K, Hennig M, Hedwig B (2021) A small, computationally flexible network produces the phenotypic diversity of song recognition in crickets. eLife 10:e61475. https://doi.org/10.7554/eLife.61475

Article  PubMed  PubMed Central  CAS  Google Scholar 

Crall JD, Switzer CM, Oppenheimer RL et al (2018) Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362:683–686. https://doi.org/10.1126/science.aat1598

Crossthwaite AJ, Bigot A, Camblin P, Goodchild J, Lind RJ, Slater R, Maienfisch P (2017) The invertebrate pharmacology of insecticides acting at nicotinic acetylcholine receptors. J Pestic Sci 42:67–83. https://doi.org/10.1584/jpestics.D17-019

Article  PubMed  PubMed Central  CAS  Google Scholar 

Curran JM (2013) Bolstad2: bolstad functions. R Package Version 1:0–28

Google Scholar 

Eberhard MJB, Gordon SD, Windmill JFC, Ronacher B (2014) Temperature effects on the tympanal membrane and auditory receptor neurons in the Locust. J Comp Physiol A 200:837–847. https://doi.org/10.1007/s00359-014-0926-y

Article  Google Scholar 

Elgoyhen AB, Katz E (2012) The efferent medial olivocochlear-hair cell synapse. J Physiol Paris 106:47–56. https://doi.org/10.1016/j.jphysparis.2011.06.001

Article  PubMed  Google Scholar 

Fischer J, Müller T, Spatz AK, Greggers U, Grünewald B, Menzel R (2014) Neonicotinoids interfere with specific components of navigation in honeybees. PLoS ONE 9:e91364. https://doi.org/10.1371/journal.pone.0091364

Article  PubMed  PubMed Central  CAS  Google Scholar 

Frizzi F, Balzani P, Masoni A, Frasconi Wendt C, Marconi M, Rossi A, Santini G (2023) Sub-lethal doses of imidacloprid alter food selection in the invasive garden ant Lasius Neglectus. Environ Sci Pollut Res 30:27501–27509. https://doi.org/10.1007/s11356-022-24100-7

Article  CAS  Google Scholar 

Gallai N, Salles JM, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014

Article  Google Scholar 

Gray EG (1960) The fine structure of the insect ear. Phil Trans R Soc Lond B 243:75–94. https://doi.org/10.1098/rstb.1960.0005

Article  Google Scholar 

Hallmann CA, Foppen RPB, Van Turnhout CAM, De Kroon H, Jongejans E (2014) Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511:341–343. https://doi.org/10.1038/nature13531

Article  PubMed  CAS  Google Scholar 

Hallmann CA, Sorg M, Jongejans E et al (2017) More than 75% decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12:e0185809. https://doi.org/10.1371/journal.pone.0185809

Article  PubMed  PubMed Central  CAS  Google Scholar 

Harwood GP, Prayugo V, Dolezal AG (2022) Butenolide insecticide flupyradifurone affects honey bee worker antiviral immunity and survival. Front Insect Sci 2:907555. https://doi.org/10.3389/finsc.2022.907555

Article  PubMed  PubMed Central  Google Scholar 

Hesselbach H, Scheiner R (2018) Effects of the novel pesticide flupyradifurone (Sivanto) on honeybee taste and cognition. Sci Rep 8:4954. https://doi.org/10.1038/s41598-018-23200-0

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hesselbach H, Seeger J, Schilcher F, Ankenbrand M, Scheiner R (2019) Chronic exposure to the pesticide flupyradifurone can lead to premature onset of foraging in honeybees Apis mellifera. J Appl Ecol 57:609–618. https://doi.org/10.1111/1365-2664.13555

Article  CAS  Google Scholar 

Homberg U (2002) Neurotransmitters and neuropeptides in the brain of the Locust. Microsc Res Tech 56:189–209. https://doi.org/10.1002/jemt.10024

Article  PubMed  CAS  Google Scholar 

Hoy R, Nolen T, Brodfuehrer P (1989) The neuroethology of acoustic startle and escape in flying insects. J Exp Biol 146:287–306. https://doi.org/10.1242/jeb.146.1.287

Article  PubMed  CAS  Google Scholar 

Jacobs K, Otte B, Lakes-Harlan R (1999) Tympanal receptor cells of Schistocerca gregaria: correlation of soma positions and dendrite attachment sites, central projections and physiologies. J Exp Zool 283:270–285. https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1097-010X(19990215)283:3%3C270::AID-JEZ5%3E3.0.CO;2-C

Article  Google Scholar 

Jiang J, Ma D, Zou N, Yu X, Zhang Z, Liu F, Mu W (2018) Concentrations of imidacloprid and thiamethoxam in pollen, nectar and leaves from seed-dressed cotton crops and their potential risk to honeybees (Apis mellifera L). Chemosphere 201:159–167. https://doi.org/10.1016/j.chemosphere.2018.02.168

Article  PubMed  CAS  Google Scholar 

Jones AK, Brown LA, Sattelle DB (2007) Insect nicotinic acetylcholine receptor gene families: from genetic model organism to vector, pest and beneficial species. Invertebr Neurosci 7:67–73. https://doi.org/10.1007/s10158-006-0039-6

Article  CAS  Google Scholar 

Kalmring K (1975) The afferent auditory pathway in the ventral cord of Locusta migratoria (Acrididae) I. synaptic connectivity and information processing among the auditory neurons of the ventral cord. J Comp Physiol 104:103–141. https://doi.org/10.1007/BF01379455

Article  Google Scholar 

Kiljanek T, Niewiadowska A, Gaweł M, Semeniuk S, Borzęcka M, Posyniak A, Pohorecka K (2017) Multiple pesticide residues in live and poisoned honeybees–preliminary exposure assessment. Chemosphere 175:36–44. https://doi.org/10.1016/j.chemosphere.2017.02.028

Article  PubMed  CAS  Google Scholar 

Loh YMM, Su MP, Ellis DA, Andrés M (2023) The auditory efferent system in mosquitoes. Front Cell Dev Biol 11:1123738. https://doi.org/10.3389/fcell.2023.1123738

Article 

留言 (0)

沒有登入
gif