Awasthi P, Mahajan V, Jamwal VL et al (2019) Characterization of the gene encoding 4-coumarate:CoA ligase in Coleus forskohlii. J Plant Biochem Biotechnol 28:203–210. https://doi.org/10.1007/s13562-018-0468-4
Chen R, Cao Y, Wang W et al (2021) Transcription factor SmSPL7 promotes anthocyanin accumulation and negatively regulates phenolic acid biosynthesis in Salvia miltiorrhiza. Plant Sci Int J Exp Plant Biol 310:110993. https://doi.org/10.1016/j.plantsci.2021.110993
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J Cell Mol Biol 16:735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
Cukovic D, Ehlting J, VanZiffle JA, Douglas CJ (2001) Structure and evolution of 4-coumarate:coenzyme A ligase (4CL) gene families. Biol Chem 382:645–654. https://doi.org/10.1515/BC.2001.076
Article CAS PubMed Google Scholar
Di P, Zhang L, Chen J et al (2013) 13C tracer reveals phenolic acids biosynthesis in hairy root cultures of Salvia miltiorrhiza. ACS Chem Biol 8:1537–1548. https://doi.org/10.1021/cb3006962
Article CAS PubMed Google Scholar
Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arab Book 9:e0152. https://doi.org/10.1199/tab.0152
Gomes-Junior RA, Moldes CA, Delite FS et al (2006) Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65:1330–1337. https://doi.org/10.1016/j.chemosphere.2006.04.056
Article CAS PubMed Google Scholar
Gui J, Shen J, Li L (2011) Functional characterization of evolutionarily divergent 4-coumarate:coenzyme a ligases in rice. Plant Physiol 157:574–586. https://doi.org/10.1104/pp.111.178301
Article CAS PubMed PubMed Central Google Scholar
Hu W-J, Kawaoka A, Tsai C-J et al (1998) Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen ( Populus tremuloides ). Proc Natl Acad Sci 95:5407–5412. https://doi.org/10.1073/pnas.95.9.5407
Article CAS PubMed PubMed Central Google Scholar
Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907. https://doi.org/10.1002/j.1460-2075.1987.tb02730.x
Article CAS PubMed PubMed Central Google Scholar
Lai G, Cui Y, Granato D et al (2022) Free, soluble conjugated and insoluble bonded phenolic acids in Keemun black tea: From UPLC-QQQ-MS/MS method development to chemical shifts monitoring during processing. Food Res Int Ott Ont 155:111041. https://doi.org/10.1016/j.foodres.2022.111041
Lavhale SG, Kalunke RM, Giri AP (2018) Structural, functional and evolutionary diversity of 4-coumarate-CoA ligase in plants. Planta 248:1063–1078. https://doi.org/10.1007/s00425-018-2965-z
Article CAS PubMed Google Scholar
Li Z, Nair SK (2015) Structural basis for specificity and flexibility in a plant 4-coumarate:CoA ligase. Struct Lond Engl 1993 23:2032–2042. https://doi.org/10.1016/j.str.2015.08.012
Li Z-B, Li C-F, Li J, Zhang Y-S (2014) Molecular cloning and functional characterization of two divergent 4-coumarate : coenzyme a ligases from Kudzu (Pueraria lobata). Biol Pharm Bull 37:113–122. https://doi.org/10.1248/bpb.b13-00633
Article CAS PubMed Google Scholar
Li Y, Kim JI, Pysh L, Chapple C (2015) Four isoforms of Arabidopsis 4-coumarate:CoA ligase have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiol 169:2409–2421. https://doi.org/10.1104/pp.15.00838
Article CAS PubMed PubMed Central Google Scholar
Liu T, Yao R, Zhao Y et al (2017) Cloning, functional characterization and site-directed mutagenesis of 4-coumarate: coenzyme A ligase (4CL) involved in coumarin biosynthesis in Peucedanum praeruptorum Dunn. Front Plant Sci 8:4. https://doi.org/10.3389/fpls.2017.00004
Article PubMed PubMed Central Google Scholar
Nie T, Sun X, Wang S et al (2023) Genome-wide identification and expression analysis of the 4-coumarate: CoA ligase gene family in Solanum tuberosum. Int J Mol Sci 24:1642. https://doi.org/10.3390/ijms24021642
Article CAS PubMed PubMed Central Google Scholar
Peng J-J, Wu Y-C, Wang S-Q et al (2020) SmbHLH53 is relevant to jasmonate signaling and plays dual roles in regulating the genes for enzymes in the pathway for salvianolic acid B biosynthesis in Salvia miltiorrhiza. Gene 756:144920. https://doi.org/10.1016/j.gene.2020.144920
Article CAS PubMed Google Scholar
Rani A, Singh K, Sood P et al (2009) p-Coumarate:CoA ligase as a key gene in the yield of catechins in tea [Camellia sinensis (L.) O. Kuntze]. Funct Integr Genomics 9:271–275. https://doi.org/10.1007/s10142-008-0098-3
Article CAS PubMed Google Scholar
Tan R, Chen M, Wang L et al (2023) A tracking work on how Sm4CL2 re-directed the biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots. Plant Cell Rep 42:297–308. https://doi.org/10.1007/s00299-022-02957-9
Article CAS PubMed Google Scholar
Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(research0034):1. https://doi.org/10.1186/gb-2002-3-7-research0034
Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20. https://doi.org/10.1093/mp/ssp106
Article CAS PubMed Google Scholar
Wang X, Morris-Natschke SL, Lee K-H (2007) New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev 27:133–148. https://doi.org/10.1002/med.20077
Article CAS PubMed Google Scholar
Wang B, Sun W, Li Q et al (2015) Genome-wide identification of phenolic acid biosynthetic genes in Salvia miltiorrhiza. Planta 241:711–725. https://doi.org/10.1007/s00425-014-2212-1
Article CAS PubMed Google Scholar
Wang Y, Guo L, Zhao Y et al (2022) Systematic analysis and expression profiles of the 4-coumarate: CoA ligase (4CL) gene family in Pomegranate (Punica granatum L.). Int J Mol Sci 23:3509. https://doi.org/10.3390/ijms23073509
Article CAS PubMed PubMed Central Google Scholar
Wei B, Sun C, Wan H et al (2023) Bioactive components and molecular mechanisms of Salvia miltiorrhiza Bunge in promoting blood circulation to remove blood stasis. J Ethnopharmacol 317:116697. https://doi.org/10.1016/j.jep.2023.116697
Wu R, Zhou Y, Xu H et al (2023) Aqueous extract of Salvia miltiorrhiza Bunge reduces blood pressure through inhibiting oxidative stress, inflammation and fibrosis of adventitia in primary hypertension. Front Pharmacol 14:1093669. https://doi.org/10.3389/fphar.2023.1093669
Article CAS PubMed PubMed Central Google Scholar
Xiao Y, Gao S, Di P et al (2009) Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiol Plant 137:1–9. https://doi.org/10.1111/j.1399-3054.2009.01257.x
Article CAS PubMed Google Scholar
Xu J, Wei K, Zhang G et al (2018) Ethnopharmacology, phytochemistry, and pharmacology of Chinese Salvia species: a review. J Ethnopharmacol 225:18–30. https://doi.org/10.1016/j.jep.2018.06.029
Article CAS PubMed Google Scholar
Yan Y, Wan
留言 (0)