Pathogenic variants in SHROOM3 associated with hemifacial microsomia

Luquetti DV, Cox TC, Lopez-Camelo J, Dutra MdaG, Cunningham ML, Castilla EE. Preferential associated anomalies in 818 cases of microtia in South America. Am J Med Genet A. 2013;161A:1051–7.

Article  PubMed  Google Scholar 

Luquetti DV, Heike CL, Hing AV, Cunningham ML, Cox TC. Microtia: epidemiology and genetics. Am J Med Genet A. 2012;158A:124–39.

Mao K, Borel C, Ansar M, Jolly A, Makrythanasis P, Froehlich C, et al. FOXI3 pathogenic variants cause one form of craniofacial microsomia. Nat Commun. 2023;14:2026.

Article  PubMed  PubMed Central  Google Scholar 

Quiat D, Timberlake AT, Curran JJ, Cunningham ML, McDonough B, Artunduaga MA, et al. Damaging variants in FOXI3 cause microtia and craniofacial microsomia. Genet Med. 2023;25:143–50.

Article  PubMed  Google Scholar 

Timberlake AT, Griffin C, Heike CL, Hing AV, Cunningham ML, Chitayat D, et al. Haploinsufficiency of SF3B2 causes craniofacial microsomia. Nat Commun. 2021;12:4680.

Article  PubMed  PubMed Central  Google Scholar 

Luquetti DV, Heike CL, Zarante I, Timms AE, Gustafson J, Pachajoa H, et al. MYT1 role in the microtia-craniofacial microsomia spectrum. Mol Genet Genomic Med. 2020;8:e1401.

Article  PubMed  PubMed Central  Google Scholar 

Quiat D, Kim SW, Zhang Q, Morton SU, Pereira AC, DePalma SR, et al. An ancient founder mutation located between ROBO1 and ROBO2 is responsible for increased microtia risk in Amerindigenous populations. Proc Natl Acad Sci USA. 2022;119:e2203928119.

Article  PubMed  PubMed Central  Google Scholar 

Zhang YB, Hu J, Zhang J, Zhou X, Li X, Gu C, et al. Genome-wide association study identifies multiple susceptibility loci for craniofacial microsomia. Nat Commun. 2016;7:10605.

Article  PubMed  PubMed Central  Google Scholar 

Xu X, Wang B, Jiang Z, Chen Q, Mao K, Shi X, et al. Novel risk factors for craniofacial microsomia and assessment of their utility in clinic diagnosis. Hum Mol Genet. 2021;30:1045–56.

Ernst S, Liu K, Agarwala S, Moratscheck N, Avci ME, Dalle Nogare D, et al. Shroom3 is required downstream of FGF signalling to mediate proneuromast assembly in zebrafish. Development. 2012;139:4571–81.

Article  PubMed  Google Scholar 

Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42:D1001–6.

Article  PubMed  Google Scholar 

Ray D, Venkataraghavan S, Zhang W, Leslie EJ, Hetmanski JB, Weinberg SM, et al. Pleiotropy method reveals genetic overlap between orofacial clefts at multiple novel loci from GWAS of multi-ethnic trios. PLoS Genet. 2021;17:e1009584.

Article  PubMed  PubMed Central  Google Scholar 

Leslie EJ, Carlson JC, Shaffer JR, Butali A, Buxo CJ, Castilla EE, et al. Genome-wide meta-analyses of nonsyndromic orofacial clefts identify novel associations between FOXE1 and all orofacial clefts, and TP63 and cleft lip with or without cleft palate. Hum Genet. 2017;136:275–86.

Article  PubMed  PubMed Central  Google Scholar 

Diaz Perez KK, Chung S, Head ST, Epstein MP, Hecht JT, Wehby GL, et al. Rare variants found in multiplex families with orofacial clefts: does expanding the phenotype make a difference? Am J Med Genet A. 2023;191:2558–70.

Chen Z, Kuang L, Finnell RH, Wang H. Genetic and functional analysis of SHROOM1-4 in a Chinese neural tube defect cohort. Hum Genet. 2018;137:195–202.

Article  PubMed  PubMed Central  Google Scholar 

Lemay P, Guyot MC, Tremblay E, Dionne-Laporte A, Spiegelman D, Henrion E, et al. Loss-of-function de novo mutations play an important role in severe human neural tube defects. J Med Genet. 2015;52:493–7.

Article  PubMed  Google Scholar 

Xu L, Yang K, Yin S, Gu Y, Fan Q, Wang Y, et al. Family-based exome sequencing identifies candidate genes related to keratoconus in Chinese families. Front Genet. 2022;13:988620.

Article  PubMed  PubMed Central  Google Scholar 

Hildebrand JD, Soriano P. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell. 1999;99:485–97.

Article  PubMed  Google Scholar 

Cong PK, Bai WY, Li JC, Yang MY, Khederzadeh S, Gai SR, et al. Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project. Nat Commun. 2022;13:2939.

Article  PubMed  PubMed Central  Google Scholar 

Xu Y, Zhang T, Zhou Q, Hu M, Qi Y, Xue Y, et al. A single-cell transcriptome atlas profiles early organogenesis in human embryos. Nat Cell Biol. 2023;25:604–15.

Article  PubMed  Google Scholar 

Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 2011;9:e1000582.

Article  PubMed  PubMed Central  Google Scholar 

Prokop JW, Yeo NC, Ottmann C, Chhetri SB, Florus KL, Ross EJ, et al. Characterization of coding/noncoding variants for SHROOM3 in patients with CKD. J Am Soc Nephrol. 2018;29:1525–35.

Article  PubMed  PubMed Central  Google Scholar 

Yeo NC, O’Meara CC, Bonomo JA, Veth KN, Tomar R, Flister MJ, et al. Shroom3 contributes to the maintenance of the glomerular filtration barrier integrity. Genome Res. 2015;25:57–65.

Article  PubMed  PubMed Central  Google Scholar 

Nishimura T, Takeichi M. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development. 2008;135:1493–502.

Article  PubMed  Google Scholar 

Plageman TF Jr, Chung MI, Lou M, Smith AN, Hildebrand JD, Wallingford JB, et al. Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination. Development. 2010;137:405–15.

Article  PubMed  PubMed Central  Google Scholar 

Plageman TF Jr, Chauhan BK, Yang C, Jaudon F, Shang X, Zheng Y, et al. A Trio-RhoA-Shroom3 pathway is required for apical constriction and epithelial invagination. Development. 2011;138:5177–88.

Article  PubMed  PubMed Central  Google Scholar 

Carlson BM. Human embryology and developmental biology. Sixth edition. ed. Elsevier: St. Louis, Missouri, 2019.

Schlosser G. Induction and specification of cranial placodes. Dev Biol. 2006;294:303–51.

Article  PubMed  Google Scholar 

Rossant J, Tam PPL. ScienceDirect. Mouse development: patterning, morphogenesis, and organogenesis. Academic Press: San Diego, 2002.

Lewandowski JP, Du F, Zhang S, Powell MB, Falkenstein KN, Ji H, et al. Spatiotemporal regulation of GLI target genes in the mammalian limb bud. Dev Biol. 2015;406:92–103.

Article  PubMed  PubMed Central  Google Scholar 

Groves AK, Fekete DM. Shaping sound in space: the regulation of inner ear patterning. Development. 2012;139:245–57.

Article  PubMed  PubMed Central  Google Scholar 

Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal. 2010;8:8.

Article  PubMed  PubMed Central  Google Scholar 

Kim K, Ossipova O, Sokol SY. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells. 2015;33:674–85.

Article  PubMed  Google Scholar 

Dietz ML, Bernaciak TM, Vendetti F, Kielec JM, Hildebrand JD. Differential actin-dependent localization modulates the evolutionarily conserved activity of Shroom family proteins. J Biol Chem. 2006;281:20542–54.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif