CRISPR knock-in of a chimeric antigen receptor into GAPDH 3’UTR locus generates potent B7H3-specific NK-92MI cells

Marofi F, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelbasset WK, Suksatan W, et al. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Res Ther. 2021;12:1–23.

Article  Google Scholar 

Baker DJ, Arany Z, Baur JA, Epstein JA, June CH. CAR T therapy beyond cancer: the evolution of a living drug. Nature. 2023;619:707–15.

Article  CAS  PubMed  Google Scholar 

Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168:724–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang R-S, Lai M-C, Shih H-A, Lin S. A robust platform for expansion and genome editing of primary human natural killer cells. J Exp Med. 2021;218:e20201529.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simonetta F, Alvarez M, Negrin RS. Natural killer cells in graft-versus-host-disease after allogeneic hematopoietic cell transplantation. Front Immunol. 2017;8:465.

Article  PubMed  PubMed Central  Google Scholar 

Sutlu T, Nyström S, Gilljam M, Stellan B, Applequist SE, Alici E. Inhibition of intracellular antiviral defense mechanisms augments lentiviral transduction of human natural killer cells: implications for gene therapy. Hum Gene Ther. 2012;23:1090–1100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu M, Huang W, Guo Y, Zhou Y, Zhi C, Chen J, et al. CAR NK-92 cells targeting DLL3 kill effectively small cell lung cancer cells in vitro and in vivo. J Leukocyte Biol. 2022;112:901–11.

Article  CAS  PubMed  Google Scholar 

Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8:1083.

CAS  PubMed  PubMed Central  Google Scholar 

Allan DS, Chakraborty M, Waller GC, Hochman MJ, Poolcharoen A, Reger RN, et al. Systematic improvements in lentiviral transduction of primary human natural killer cells undergoing ex vivo expansion. Mol Ther Methods Clin Dev. 2021;20:559–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature. 2018;558:307–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schober K, Müller TR, Gökmen F, Grassmann S, Effenberger M, Poltorak M, et al. Orthotopic replacement of T-cell receptor α-and β-chains with preservation of near-physiological T-cell function. Nat Biomed Eng. 2019;3:974–84.

Article  PubMed  Google Scholar 

Frigault MJ, Lee J, Basil MC, Carpenito C, Motohashi S, Scholler J, et al. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol. Res. 2015;3:356–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao C, Wang Y, Huang Y, Duan Y, Liang Y, Chen J, et al. CD38‐specific CAR integrated into CD38 locus driven by different promoters causes distinct antitumor activities of T and NK cells. Adv Sci. 2023;10:2207394.

Article  CAS  Google Scholar 

Wang H-X, Li M, Lee CM, Chakraborty S, Kim H-W, Bao G, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chem Rev. 2017;117:9874–906.

Article  CAS  PubMed  Google Scholar 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science. 2012;337:816–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

Article  CAS  PubMed  Google Scholar 

Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014;514:380–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 2014;32:551–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo C, et al. CBLB, CISH and CD70 multiplexed gene knockout with CRISPR/Cas9 enhances cytotoxicity of CD70-CAR NK cells and provides greater resistance to TGF-β for cancer immunotherapy. Cancer Res. 2022;82:5512.

Albinger N, Bexte T, Buchinger L, Wendel P, Al-Ajami A, Gessner A, et al. CRISPR/Cas9 gene editing of immune checkpoint receptor NKG2A improves the efficacy of primary CD33-CAR-NK cells against AML. Blood. 2022;140:4558–9.

Article  Google Scholar 

Navin I, Dysthe M, Baumgartner C. Parihar R 413 Genetic deletion of TIGIT enhances CAR-NK cell function in the solid tumor microenvironment. BMJ Specialist J. 2022;10:2.

Guo X, Mahlakõiv T, Ye Q, Somanchi S, He S, Rana H, et al. CBLB ablation with CRISPR/Cas9 enhances cytotoxicity of human placental stem cell-derived NK cells for cancer immunotherapy. J Immunother Cancer. 2021;9:e001975.

Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grieger JC, Choi VW, Samulski RJ. Production and characterization of adeno-associated viral vectors. Nat Protoc. 2006;1:1412–28.

Article  CAS  PubMed  Google Scholar 

Majzner RG, Theruvath JL, Nellan A, Heitzeneder S, Cui Y, Mount CW, et al. CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res. 2019;25:2560–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brinkman EK, Chen T, Amendola M, Van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acid Res. 2014;42:e168.

Article  PubMed  PubMed Central  Google Scholar 

Bournazos S, Wang TT, Dahan R, Maamary J, Ravetch JV. Signaling by antibodies: recent progress. Annu Rev Immunol. 2017;35:285–311.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandelboim O, Malik P, Davis DM, Jo CH, Boyson JE, Strominger JL. Human CD16 as a lysis receptor mediating direct natural killer cell cytotoxicity. Proc Natl Acad Sci USA. 1999;96:5640–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021;18:85–100.

Article  PubMed  Google Scholar 

Wu Z, Zhang H, Wu M, Peng G, He Y, Wan N, et al. Targeting the NKG2D/NKG2D-L axis in acute myeloid leukemia. Biomed Pharmacother. 2021;137:111299.

Article  CAS  PubMed  Google Scholar 

Dienstmann R, Rodon J, Serra V, Tabernero J. Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol Cancer Ther. 2014;13:1021–31.

Article  CAS  PubMed  Google Scholar 

Courtney KD, Corcoran RB, Engelman JA. The PI3K pathw

留言 (0)

沒有登入
gif