Abdallah CG, Sanacora G, Duman RS, Krystal JH (2015) Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu Rev Med. 66, 509– 23. https://doi.org/10.1146/annurev-med-053013-062946
Abelaira HM, Réus GZ, Ignácio ZM, Dos Santos MAB, de Moura AB, Matos D, Demo JP, da Silva JBI, Danielski LG, Petronilho F, Carvalho AF, Quevedo J (2017) Ketamine exhibits different neuroanatomical Profile after mammalian target of Rapamycin Inhibition in the Prefrontal cortex: the role of inflammation and oxidative stress. Mol Neurobiol 54(7):5335–5346. https://doi.org/10.1007/s12035-016-0071-4
Article PubMed CAS Google Scholar
Ahmed HI, Abdel-Sattar SA, Zaky HS (2018) Vinpocetine halts ketamine-induced schizophrenia-like deficits in rats: impact on BDNF and GSK-3β/β-catenin pathway. Naunyn Schmiedebergs Arch Pharmacol 391(12):1327–1338. https://doi.org/10.1007/s00210-018-1552-y
Article PubMed CAS Google Scholar
Barichello T, Martins MR, Reinke A, Constantino LS, Machado RA, Valvassori SS, Moreira JC, Quevedo J, Dal-Pizzol F (2007) Behavioral deficits in sepsis-surviving rats induced by cecal ligation and perforation. Braz J Med Biol Res 40(6):831–837. https://doi.org/10.1590/s0100-879x2007000600013
Article PubMed CAS Google Scholar
Bauer ME, Teixeira AL (2019) Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci 1437(1):57–67. https://doi.org/10.1111/nyas.13712
Article PubMed CAS Google Scholar
Canever L, Oliveira L, D’Altoé de Luca R, Correa PT, de Fraga B, Matos D, Scaini MP, Quevedo G, Streck J, Zugno EL AI (2010) A rodent model of schizophrenia reveals increase in creatine kinase activity with associated behavior changes. Oxid Med Cell Longev 3(6):421–427. https://doi.org/10.4161/oxim.3.6.13446
Article PubMed PubMed Central Google Scholar
Chang D, Zhao J, Zhang X, Lian H, Du X, Yuan R, Wen Y, Gao L (2019) Effect of ketamine combined with DHA on lipopolysaccharide-induced depression-like behavior in rats. Int Immunopharmacol 75:105788. https://doi.org/10.1016/j.intimp.2019.105788
Article PubMed CAS Google Scholar
Chiu K, Lau WM, Lau HT, So KF, Chang RCC (2007) Micro-dissection of rat brain for RNA or protein extraction from specific brain region. J Vis Exp 7:269. https://doi.org/10.3791/269
Comim CM, Cassol OJ Jr, Constantino LC, Petronilho F, Constantino LS, Stertz L, Kapczinski F, Barichello T, Quevedo J, Dal-Pizzol F (2010) Depressive-like parameters in sepsis survivor rats. Neurotox Res 17(3):279–286. https://doi.org/10.1007/s12640-009-9101-6
Article PubMed CAS Google Scholar
Comim CM, Silva NC, Patrício JJ, Palmas D, Mendonça BP, Bittencourt MO, Cassol OJ Jr, Barichello T, Zugno AI, Quevedo J, Dal-Pizzol F (2015) Effect of sepsis on behavioral changes on the ketamine-induced animal model of schizophrenia. J Neuroimmunol 281:78–82. https://doi.org/10.1016/j.jneuroim.2015.02.012
Article PubMed CAS Google Scholar
Dantzer R (2018) Neuroimmune interactions: from the brain to the Immune System and Vice Versa. Physiol Rev 98(1):477–504. https://doi.org/10.1152/physrev.00039.2016
Article PubMed CAS Google Scholar
Deyama S, Duman RS (2020) Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Pharmacol Biochem Behav 188:172837. https://doi.org/10.1016/j.pbb.2019.172837
Article PubMed CAS Google Scholar
Fleshner M, Frank M, Maier SF (2017) Danger signals and inflammasomes: stress-evoked sterile inflammation in Mood disorders. Neuropsychopharmacology 42(1):36–45. https://doi.org/10.1038/npp.2016.125.
Article PubMed CAS Google Scholar
Fogaça MV, Fukumoto K, Franklin T, Liu RJ, Duman CH, Vitolo OV, Duman RS (2019) N-Methyl-D-aspartate receptor antagonist d-methadone produces rapid, mTORC1-dependent antidepressant effects. Neuropsychopharmacology 44(13):2230–2238. https://doi.org/10.1038/s41386-019-0501-x
Article PubMed PubMed Central CAS Google Scholar
Fraga DB, Réus GZ, Abelaira HM, De Luca RD, Canever L, Pfaffenseller B, Colpo GD, Kapczinski F, Quevedo J, Zugno AI (2013) Ketamine alters behavior and decreases BDNF levels in the rat brain as a function of time after drug administration. Braz J Psychiatry 35(3):262–266. https://doi.org/10.1590/1516-4446-2012-0858
Gao LL, Wang ZH, Mu YH, Liu ZL, Pang L (2022) Emodin promotes Autophagy and prevents apoptosis in Sepsis-Associated Encephalopathy through activating BDNF/TrkB signaling. Pathobiology 89(3):135–145. https://doi.org/10.1159/000520281
Article PubMed CAS Google Scholar
Giacobbo BL, de Freitas BS, Vedovelli K, Schlemmer LM, Pires VN, Antoniazzi V, Santos CSD, Paludo L, Borges JV, de Lima DB, Schröder N, de Vries EFJ, Bromberg E (2019) Long-term environmental modifications affect BDNF concentrations in rat hippocampus, but not in serum. Behav Brain Res 372:111965. https://doi.org/10.1016/j.bbr.2019.111965
Article PubMed CAS Google Scholar
Gibney SM, Drexhage HA (2013) Evidence for a dysregulated immune system in the etiology of psychiatric disorders. J Neuroimmune Pharmacol 8(4):900–920. https://doi.org/10.1007/s11481-013-9462-8
Glowinski J, Iversen L (1966) Regional studies of catecholamines in the rat brain. 3. Subcellular distribution of endogenous and exogenous catecholamines in various brain regions. Biochem Pharmacol. 15(7), 977– 87. https://doi.org/10.1016/0006-2952(66)90175-4
Haaf M, Leicht G, Curic S, Mulert C (2018) Glutamatergic deficits in Schizophrenia - biomarkers and pharmacological interventions within the ketamine model. Curr Pharm Biotechnol 19(4):293–307. https://doi.org/10.2174/1389201019666180620112528
Article PubMed PubMed Central CAS Google Scholar
Hashimoto K (2020) Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-Ketamine. Biochem Pharmacol 177:113935. https://doi.org/10.1016/j.bcp.2020.113935
Article PubMed CAS Google Scholar
Hubbard WJ, Choudhry M, Schwacha MG, Kerby JD, Rue LW 3rd, Bland KI, Chaudry IH (2005) Cecal Ligation Puncture Shock 24:52–57. https://doi.org/10.1097/01.shk.0000191414.94461.7e
Ji MH, Xia DG, Zhu LY, Zhu X, Zhou XY, Xia JY, Yang JJ (2018) Short- and long-term Protective effects of Melatonin in a mouse model of Sepsis-Associated Encephalopathy. Inflammation 41(2):515–529. https://doi.org/10.1007/s10753-017-0708-0
Article PubMed CAS Google Scholar
Jiang S, Bai L, Zhang X, Zhou X, Liu Y (2022) Preexposure to heat stress attenuates sepsis-associated inflammation and cognitive decline in rats. Neurosci Lett 780:136647. https://doi.org/10.1016/j.neulet.2022.136647
Article PubMed CAS Google Scholar
Kopra E, Mondelli V, Pariante C, Nikkheslat N (2021) Ketamine’s effect on inflammation and kynurenine pathway in depression: a systematic review. J Psychopharmacol 35(8):934–945. https://doi.org/10.1177/02698811211026426
Article PubMed PubMed Central CAS Google Scholar
Lepack AE, Bang E, Lee B, Dwyer JM, Duman RS (2016) Fast-acting antidepressants rapidly stimulate ERK signaling and BDNF release in primary neuronal cultures. Neuropharmacology 111:242–252. https://doi.org/10.1016/j.neuropharm.2016.09.011
Article PubMed PubMed Central CAS Google Scholar
Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS (2014) BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol 18(1):pyu033. https://doi.org/10.1093/ijnp/pyu033
Article PubMed PubMed Central CAS Google Scholar
Li JM, Liu LL, Su WJ, Wang B, Zhang T, Zhang Y, Jiang CL (2019) Ketamine may exert antidepressant effects via suppressing NLRP3 inflammasome to upregulate AMPA receptors. Neuropharmacology 146:149–153. https://doi.org/10.1016/j.neuropharm.2018.11.022
Article PubMed CAS Google Scholar
Lowry OH, Rosebrough, Farr AL (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275
留言 (0)