Integrating vestibular and visual cues for verticality perception

Alberts BB, Selen LP, Verhagen WI, Medendorp WP (2015) Sensory substitution in bilateral vestibular a-reflexic patients. Physiol Rep. https://doi.org/10.14814/phy2.12385

Article  PubMed  PubMed Central  Google Scholar 

Angelaki DE, Perachio AA (1993) Contribution of irregular semicircular canal afferents to the horizontal vestibuloocular response during constant velocity rotation. J Neurophysiol 69(3):996–999

Article  CAS  PubMed  Google Scholar 

Angelaki DE, Gu Y, DeAngelis GC (2009) Multisensory integration: psychophysics, neurophysiology, and computation. Curr Opin Neurobiol 19(4):452–458. https://doi.org/10.1016/j.conb.2009.06.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Angelaki DE, Yong Gu, Deangelis GC (2011) Visual and vestibular cue integration for heading perception in extrastriate visual cortex. J Physiol 589(Pt 4):825–833

Article  CAS  PubMed  Google Scholar 

Arshad I, Gallagher M, Ferrè ER (2023) Visuo-vestibular conflicts within the roll plane modulate multisensory verticality perception. Neurosci Lett. https://doi.org/10.1016/j.neulet.2022.136963

Article  PubMed  Google Scholar 

Barra J, Marquer A, Joassin R, Reymond C, Metge L, Chauvineau V, Pérennou D (2010) Humans use internal models to construct and update a sense of verticality. Brain 133(Pt 12):3552–3563

Article  PubMed  Google Scholar 

Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol. https://doi.org/10.1152/jn.2001.85.2.886

Article  PubMed  Google Scholar 

Brandt T, Glasauer S, Stephan T, Bense S, Yousry TA, Deutschlander A, Dieterich M (2002) Visual-vestibular and visuovisual cortical interaction: new insights from fMRI and pet. Ann N Y Acad Sci 956:230–241

Article  PubMed  Google Scholar 

Bremmer F, Klam F, Duhamel JR, Ben HS, Graf W (2002) Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). The Eur J Neurosci. https://doi.org/10.1046/j.1460-9568.2002.02206.x

Article  PubMed  Google Scholar 

Bronstein AM (2009) Verticality perception. Encycl Neurosci. https://doi.org/10.1093/acrefore/9780190264086.013.437

Article  Google Scholar 

Bronstein AM, Guerraz M (1999) Visual-vestibular control of posture and gait: physiological mechanisms and disorders. Curr Opin Neurol. https://doi.org/10.1097/00019052-199902000-00002

Article  PubMed  Google Scholar 

Chetana N, Jayesh R (2015) Subjective visual vertical in various vestibular disorders by using a simple bucket test. Indian J Otolaryngol Head Neck Surg. https://doi.org/10.1007/s12070-014-0760-0

Article  PubMed  Google Scholar 

Clemens IA, De Vrijer M, Selen LP, Van Gisbergen JA, Medendorp WP (2011) multisensory processing in spatial orientation: an inverse probabilistic approach. J Neurosci. https://doi.org/10.1523/JNEUROSCI.6472-10.2011

Article  PubMed  PubMed Central  Google Scholar 

Cullen KE (2022) Effects of galvanic vestibular stimulation on subjective visual vertical and sitting balance in patients with stroke. J Stroke Cerebrovasc Dis 31(5):106430

Article  Google Scholar 

Cuturi LF, Gori M (2019) Biases in the visual and haptic subjective vertical reveal the role of proprioceptive/vestibular priors in child development. Front Neurol. https://doi.org/10.3389/fneur.2018.01151

Article  PubMed  PubMed Central  Google Scholar 

Day BL, Fitzpatrick RC (2005) Virtual head rotation reveals a process of route reconstruction from human vestibular signals. J Physiol. https://doi.org/10.1113/jphysiol.2005.092544

Article  PubMed  PubMed Central  Google Scholar 

de Winkel KN, Mikhail K, Daniel D, Bülthoff HH (2018) Causal inference in the perception of verticality. Sci Rep 8(1):5483

Article  PubMed  PubMed Central  Google Scholar 

Dichgans J, Brandt T (1978) Visual-vestibular interaction: effects on self-motion perception and postural control. Perception. https://doi.org/10.1007/978-3-642-46354-9_25

Article  Google Scholar 

Dockheer KM, Bockisch CJ, Tarnutzer AA (2018) Effects of optokinetic stimulation on verticality perception are much larger for vision-based paradigms than for vision-independent paradigms. Front Neurol 9(May):342959

Google Scholar 

Dyde RT, Jenkin MR, Harris LR (2006) The subjective visual vertical and the perceptual upright. Exp Brain Res 173(4):612–622

Article  PubMed  Google Scholar 

Ernst MO, Banks MS (2002) humans integrate visual and haptic information in a statistically optimal fashion. Nature. https://doi.org/10.1038/415429a

Article  PubMed  Google Scholar 

Ferrè ER, Walther LE, Haggard P (2015) Multisensory interactions between vestibular, visual and somatosensory signals. PLoS One 10(4):e0124573

Article  PubMed  PubMed Central  Google Scholar 

Fetsch CR, Turner AH, DeAngelis GC, Angelaki DE (2009) Dynamic reweighting of visual and vestibular cues during self-motion perception. J Neurosci 29(49):15601–15612

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fetsch CR, DeAngelis GC, Angelaki DE (2010) Visual-vestibular cue integration for heading perception: applications of optimal cue integration theory. Eur J Neurosci 31(10):1721

Article  PubMed  PubMed Central  Google Scholar 

Fetsch CR, Pouget A, DeAngelis GC, Angelaki DE (2011) Neural correlates of reliability-based cue weighting during multisensory integration. Nat Neurosci 15(1):146–154

Article  PubMed  PubMed Central  Google Scholar 

Fitzpatrick RC, Day BL (2004) Probing the human vestibular system with galvanic stimulation. J Appl Physiol 96(6):2301–2316

Article  PubMed  Google Scholar 

Fitzpatrick R, Burke D, Gandevia SC (1994) Task-dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans. J Physiol. https://doi.org/10.1113/jphysiol.1994.sp020257

Article  PubMed  PubMed Central  Google Scholar 

Fitzpatrick RC, Wardman DL, Taylor JL (1999) Effects of galvanic vestibular stimulation during human walking. J Physiol 517(Pt 3):931

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fraser LE, Makooie B, Harris LR (2015) The subjective visual vertical and the subjective haptic vertical access different gravity estimates. PLoS ONE. https://doi.org/10.1371/journal.pone.0145528

Article  PubMed  PubMed Central  Google Scholar 

Gallagher M, Dowsett R, Ferrè ER (2019) Vection in virtual reality modulates vestibular-evoked myogenic potentials. Eur J Neurosci 50(10):3557–3565

Article  PubMed  Google Scholar 

Gallagher M, Choi R, Ferrè ER (2020) Multisensory interactions in virtual reality: optic flow reduces vestibular sensitivity, but only for congruent planes of motion. Multisensory Res 33(6):625–644

Article  Google Scholar 

Gallagher M, Romano F, Bockisch CJ, Ferrè ER, Bertolini G (2023) Quantifying virtual self-motion sensations induced by galvanic vestibular stimulation. J Vestib Res 33(1):21–30

Article  CAS  PubMed  Google Scholar 

Gensberger KD, Kaufmann AK, Dietrich H, Branoner F, Banchi R, Chagnaud BP, Straka H (2016) Galvanic vestibular stimulation: cellular substrates and response patterns of neurons in the vestibulo-ocular network. J Neurosci. https://doi.org/10.1523/JNEUROSCI.4239-15.2016

Article  PubMed 

留言 (0)

沒有登入
gif