Stochastic galvanic vestibular stimulation improves kinetic performance in adolescent idiopathic scoliosis during obstacle negotiation

Abbariki F, Mikhail Y, Hamadjida A, Charron J, Mac-Thiong JM, Barthélemy D (2023) Effect of galvanic vestibular stimulation applied at the onset of stance on muscular activity and gait cycle duration in healthy individuals. Front Neural Circuits 16:1065647. https://doi.org/10.3389/fncir.2022.1065647

Article  PubMed  PubMed Central  Google Scholar 

Addai D, Zarkos J, Bowey AJ (2020) Current concepts in the diagnosis and management of adolescent idiopathic scoliosis. Childs Nerv Syst 36(6):1111–1119. https://doi.org/10.1007/s00381-020-04608-4

Article  PubMed  PubMed Central  Google Scholar 

Barmack NH (2023) Vestibular nuclei and their cerebellar connections. Essentials of Cerebellum and Cerebellar disorders. Springer, Cham, pp 51–57

Book  Google Scholar 

Bauby CE, Kuo AD (2000) Active control of lateral balance in human walking. J Biomech 33(11):1433–1440. https://doi.org/10.1016/s0021-9290(00)00101-9

Article  CAS  PubMed  Google Scholar 

Bent LR, Inglis JT, McFadyen BJ (2004) When is vestibular information important during walking? J Neurophysiol 92(3):1269–1275. https://doi.org/10.1152/jn.01260.2003

Article  PubMed  Google Scholar 

Chan WWY, Fu SN, Chong TF et al (2024) Associations between paraspinal muscle characteristics and spinal curvature in conservatively treated adolescent idiopathic scoliosis: a systematic review. Spine J 24(4):692–720. https://doi.org/10.1016/j.spinee.2023.11.008

Article  PubMed  Google Scholar 

Chen H, Hu Z, Chai Y, Tao E, Chen K, Asakawa T (2021) Galvanic vestibular stimulation with low intensity improves dynamic balance. Transl Neurosci 12(1):512–521. https://doi.org/10.1515/tnsci-2020-0197

Article  PubMed  PubMed Central  Google Scholar 

Chien JH, Eikema DJ, Mukherjee M, Stergiou N (2014) Locomotor sensory organization test: a novel paradigm for the assessment of sensory contributions in gait. Ann Biomed Eng 42(12):2512–2523. https://doi.org/10.1007/s10439-014-1112-7

Article  PubMed  PubMed Central  Google Scholar 

Chockalingam N, Healy A, Needham R (2016) Interpreting ground reaction forces in Gait. In: Müller B et al (eds) Handbook of human motion. Springer, Cham, pp 609–620

Google Scholar 

Cullen KE (2023) Internal models of self-motion: neural computations by the vestibular cerebellum. Trends Neurosci 46(11):986–1002. https://doi.org/10.1016/j.tins.2023.08.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Darici O, Kuo AD (2023) Humans plan for the near future to walk economically on uneven terrain. Proc Natl Acad Sci U S A 120(19):e2211405120. https://doi.org/10.1073/pnas.2211405120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dicharry J (2010) Kinematics and kinetics of gait: from lab to clinic. Clin Sports Med 29(3):347–364. https://doi.org/10.1016/j.csm.2010.03.013

Article  PubMed  Google Scholar 

Donno L, Monoli C, Frigo CA, Galli M (2023) Forward and Backward walking: multifactorial characterization of Gait parameters. Sens (Basel) 23(10):4671. https://doi.org/10.3390/s23104671

Article  Google Scholar 

Eder J, Kellerer S, Amberger T et al (2022) Combining vestibular rehabilitation with noisy galvanic vestibular stimulation for treatment of bilateral vestibulopathy. J Neurol 269(11):5731–5737. https://doi.org/10.1007/s00415-022-11033-x

Article  PubMed  PubMed Central  Google Scholar 

Fonteneau C, Mondino M, Arns M et al (2019) Sham tDCS: a hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimul 12(3):668–673. https://doi.org/10.1016/j.brs.2018.12.977

Article  PubMed  Google Scholar 

Forbes PA, Siegmund GP, Schouten AC, Blouin JS (2015) Task, muscle and frequency dependent vestibular control of posture. Front Integr Neurosci 8:94. https://doi.org/10.3389/fnint.2014.00094

Article  PubMed  PubMed Central  Google Scholar 

Fujimoto C, Egami N, Kawahara T et al (2018) Noisy galvanic vestibular stimulation sustainably improves posture in bilateral Vestibulopathy. Front Neurol 9:900. https://doi.org/10.3389/fneur.2018.00900

Article  PubMed  PubMed Central  Google Scholar 

Fujimoto C, Kinoshita M, Kamogashira T et al (2019) Noisy galvanic vestibular stimulation has a greater ameliorating effect on posture in unstable subjects: a feasibility study. Sci Rep 9(1):17189. https://doi.org/10.1038/s41598-019-53834-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garnett EO, den Ouden DB (2015) Validating a Sham Condition for Use in High Definition Transcranial Direct Current Stimulation. Brain Stimul 8(3):551–554. https://doi.org/10.1016/j.brs.2015.01.399

Article  PubMed  Google Scholar 

Giakas G, Baltzopoulos V, Dangerfield PH, Dorgan JC, Dalmira S (1996) Comparison of gait patterns between healthy and scoliotic patients using time and frequency domain analysis of ground reaction forces. Spine (Phila Pa 1976) 21(19):2235–2242. https://doi.org/10.1097/00007632-199610010-00011

Article  CAS  PubMed  Google Scholar 

Guertin PA (2012) Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front Neurol 3:183. https://doi.org/10.3389/fneur.2012.00183

Article  PubMed  Google Scholar 

Guillaud E, Seyres P, Barrière G, Jecko V, Bertrand SS, Cazalets JR (2020) Locomotion and dynamic posture: neuro-evolutionary basis of bipedal gait. Neurophysiol Clin 50(6):467–477. https://doi.org/10.1016/j.neucli.2020.10.012

Article  PubMed  Google Scholar 

Haber CK, Sacco M (2015) Scoliosis: lower limb asymmetries during the gait cycle. Arch Physiother 5:4. https://doi.org/10.1186/s40945-015-0001-1

Article  PubMed  PubMed Central  Google Scholar 

Hatzilazaridis I, Hatzitaki V, Antoniadou N, Samoladas E (2019) Postural and muscle responses to galvanic vestibular stimulation reveal a vestibular deficit in adolescents with idiopathic scoliosis. Eur J Neurosci 50(10):3614–3626. https://doi.org/10.1111/ejn.14525

Article  PubMed  Google Scholar 

Haumont T, Gauchard GC, Lascombes P, Perrin PP (2011) Postural instability in early-stage idiopathic scoliosis in adolescent girls. Spine (Phila Pa 1976) 36(13):E847–E854. https://doi.org/10.1097/BRS.0b013e3181ff5837

Article  PubMed  Google Scholar 

Hawasli AH, Hullar TE, Dorward IG (2015) Idiopathic scoliosis and the vestibular system. Eur Spine J 24(2):227–233. https://doi.org/10.1007/s00586-014-3701-4

Article  PubMed  Google Scholar 

Hazari A, Maiya AG, Nagda TV (2021) Kinematics and kinetics of Gait. Conceptual biomechanics and Kinesiology. Springer, Singapore, pp 181–196. https://doi.org/10.1007/978-981-16-4991-2_14

Chapter  Google Scholar 

Herzog W, Nigg BM, Read LJ, Olsson E (1989) Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc 21(1):110–114. https://doi.org/10.1249/00005768-198902000-00020

Article  CAS  PubMed  Google Scholar 

Hisano G, Hashizume S, Kobayashi T, Major MJ, Nakashima M, Hobara H (2021) Unilateral above-knee amputees achieve symmetric mediolateral ground reaction impulse in walking using an asymmetric gait strategy. J Biomech 115:110201. https://doi.org/10.1016/j.jbiomech.2020.110201

Article  PubMed  Google Scholar 

Hitier M, Hamon M, Denise P et al (2015) Lateral semicircular canal asymmetry in idiopathic scoliosis: an early link between Biomechanical, Hormonal and Neurosensory theories? PLoS ONE 10(7):e0131120. https://doi.org/10.1371/journal.pone.0131120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inukai Y, Masaki M, Otsuru N et al (2018) Effect of noisy galvanic vestibular stimulation in community-dwelling elderly people: a randomised controlled trial. J Neuroeng Rehabil 15(1):63. https://doi.org/10.1186/s12984-018-0407-6

Article 

留言 (0)

沒有登入
gif