Abbariki F, Mikhail Y, Hamadjida A, Charron J, Mac-Thiong JM, Barthélemy D (2023) Effect of galvanic vestibular stimulation applied at the onset of stance on muscular activity and gait cycle duration in healthy individuals. Front Neural Circuits 16:1065647. https://doi.org/10.3389/fncir.2022.1065647
Article PubMed PubMed Central Google Scholar
Addai D, Zarkos J, Bowey AJ (2020) Current concepts in the diagnosis and management of adolescent idiopathic scoliosis. Childs Nerv Syst 36(6):1111–1119. https://doi.org/10.1007/s00381-020-04608-4
Article PubMed PubMed Central Google Scholar
Barmack NH (2023) Vestibular nuclei and their cerebellar connections. Essentials of Cerebellum and Cerebellar disorders. Springer, Cham, pp 51–57
Bauby CE, Kuo AD (2000) Active control of lateral balance in human walking. J Biomech 33(11):1433–1440. https://doi.org/10.1016/s0021-9290(00)00101-9
Article CAS PubMed Google Scholar
Bent LR, Inglis JT, McFadyen BJ (2004) When is vestibular information important during walking? J Neurophysiol 92(3):1269–1275. https://doi.org/10.1152/jn.01260.2003
Chan WWY, Fu SN, Chong TF et al (2024) Associations between paraspinal muscle characteristics and spinal curvature in conservatively treated adolescent idiopathic scoliosis: a systematic review. Spine J 24(4):692–720. https://doi.org/10.1016/j.spinee.2023.11.008
Chen H, Hu Z, Chai Y, Tao E, Chen K, Asakawa T (2021) Galvanic vestibular stimulation with low intensity improves dynamic balance. Transl Neurosci 12(1):512–521. https://doi.org/10.1515/tnsci-2020-0197
Article PubMed PubMed Central Google Scholar
Chien JH, Eikema DJ, Mukherjee M, Stergiou N (2014) Locomotor sensory organization test: a novel paradigm for the assessment of sensory contributions in gait. Ann Biomed Eng 42(12):2512–2523. https://doi.org/10.1007/s10439-014-1112-7
Article PubMed PubMed Central Google Scholar
Chockalingam N, Healy A, Needham R (2016) Interpreting ground reaction forces in Gait. In: Müller B et al (eds) Handbook of human motion. Springer, Cham, pp 609–620
Cullen KE (2023) Internal models of self-motion: neural computations by the vestibular cerebellum. Trends Neurosci 46(11):986–1002. https://doi.org/10.1016/j.tins.2023.08.009
Article CAS PubMed PubMed Central Google Scholar
Darici O, Kuo AD (2023) Humans plan for the near future to walk economically on uneven terrain. Proc Natl Acad Sci U S A 120(19):e2211405120. https://doi.org/10.1073/pnas.2211405120
Article CAS PubMed PubMed Central Google Scholar
Dicharry J (2010) Kinematics and kinetics of gait: from lab to clinic. Clin Sports Med 29(3):347–364. https://doi.org/10.1016/j.csm.2010.03.013
Donno L, Monoli C, Frigo CA, Galli M (2023) Forward and Backward walking: multifactorial characterization of Gait parameters. Sens (Basel) 23(10):4671. https://doi.org/10.3390/s23104671
Eder J, Kellerer S, Amberger T et al (2022) Combining vestibular rehabilitation with noisy galvanic vestibular stimulation for treatment of bilateral vestibulopathy. J Neurol 269(11):5731–5737. https://doi.org/10.1007/s00415-022-11033-x
Article PubMed PubMed Central Google Scholar
Fonteneau C, Mondino M, Arns M et al (2019) Sham tDCS: a hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimul 12(3):668–673. https://doi.org/10.1016/j.brs.2018.12.977
Forbes PA, Siegmund GP, Schouten AC, Blouin JS (2015) Task, muscle and frequency dependent vestibular control of posture. Front Integr Neurosci 8:94. https://doi.org/10.3389/fnint.2014.00094
Article PubMed PubMed Central Google Scholar
Fujimoto C, Egami N, Kawahara T et al (2018) Noisy galvanic vestibular stimulation sustainably improves posture in bilateral Vestibulopathy. Front Neurol 9:900. https://doi.org/10.3389/fneur.2018.00900
Article PubMed PubMed Central Google Scholar
Fujimoto C, Kinoshita M, Kamogashira T et al (2019) Noisy galvanic vestibular stimulation has a greater ameliorating effect on posture in unstable subjects: a feasibility study. Sci Rep 9(1):17189. https://doi.org/10.1038/s41598-019-53834-7
Article CAS PubMed PubMed Central Google Scholar
Garnett EO, den Ouden DB (2015) Validating a Sham Condition for Use in High Definition Transcranial Direct Current Stimulation. Brain Stimul 8(3):551–554. https://doi.org/10.1016/j.brs.2015.01.399
Giakas G, Baltzopoulos V, Dangerfield PH, Dorgan JC, Dalmira S (1996) Comparison of gait patterns between healthy and scoliotic patients using time and frequency domain analysis of ground reaction forces. Spine (Phila Pa 1976) 21(19):2235–2242. https://doi.org/10.1097/00007632-199610010-00011
Article CAS PubMed Google Scholar
Guertin PA (2012) Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front Neurol 3:183. https://doi.org/10.3389/fneur.2012.00183
Guillaud E, Seyres P, Barrière G, Jecko V, Bertrand SS, Cazalets JR (2020) Locomotion and dynamic posture: neuro-evolutionary basis of bipedal gait. Neurophysiol Clin 50(6):467–477. https://doi.org/10.1016/j.neucli.2020.10.012
Haber CK, Sacco M (2015) Scoliosis: lower limb asymmetries during the gait cycle. Arch Physiother 5:4. https://doi.org/10.1186/s40945-015-0001-1
Article PubMed PubMed Central Google Scholar
Hatzilazaridis I, Hatzitaki V, Antoniadou N, Samoladas E (2019) Postural and muscle responses to galvanic vestibular stimulation reveal a vestibular deficit in adolescents with idiopathic scoliosis. Eur J Neurosci 50(10):3614–3626. https://doi.org/10.1111/ejn.14525
Haumont T, Gauchard GC, Lascombes P, Perrin PP (2011) Postural instability in early-stage idiopathic scoliosis in adolescent girls. Spine (Phila Pa 1976) 36(13):E847–E854. https://doi.org/10.1097/BRS.0b013e3181ff5837
Hawasli AH, Hullar TE, Dorward IG (2015) Idiopathic scoliosis and the vestibular system. Eur Spine J 24(2):227–233. https://doi.org/10.1007/s00586-014-3701-4
Hazari A, Maiya AG, Nagda TV (2021) Kinematics and kinetics of Gait. Conceptual biomechanics and Kinesiology. Springer, Singapore, pp 181–196. https://doi.org/10.1007/978-981-16-4991-2_14
Herzog W, Nigg BM, Read LJ, Olsson E (1989) Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc 21(1):110–114. https://doi.org/10.1249/00005768-198902000-00020
Article CAS PubMed Google Scholar
Hisano G, Hashizume S, Kobayashi T, Major MJ, Nakashima M, Hobara H (2021) Unilateral above-knee amputees achieve symmetric mediolateral ground reaction impulse in walking using an asymmetric gait strategy. J Biomech 115:110201. https://doi.org/10.1016/j.jbiomech.2020.110201
Hitier M, Hamon M, Denise P et al (2015) Lateral semicircular canal asymmetry in idiopathic scoliosis: an early link between Biomechanical, Hormonal and Neurosensory theories? PLoS ONE 10(7):e0131120. https://doi.org/10.1371/journal.pone.0131120
Article CAS PubMed PubMed Central Google Scholar
Inukai Y, Masaki M, Otsuru N et al (2018) Effect of noisy galvanic vestibular stimulation in community-dwelling elderly people: a randomised controlled trial. J Neuroeng Rehabil 15(1):63. https://doi.org/10.1186/s12984-018-0407-6
留言 (0)