Patch-Wise Deep Learning Method for Intracranial Stenosis and Aneurysm Detection-the Tromsø Study

White, H., Boden-Albala, B., Wang, C., Elkind, M. S. V., Rundek, T., Wright, C. B. (2005) Ischemic Stroke Subtype Incidence Among Whites, Blacks, and Hispanics. Circulation, 111(10):1327-31.

Holmstedt, C. A., Turan, T. N., & Chimowitz, M. I. (2013). Atherosclerotic intracranial arterial stenosis: Risk factors, diagnosis, and treatment. The Lancet Neurology, 12(11), 1106–1114.

Article  PubMed  PubMed Central  Google Scholar 

Turan, T. N., Makki, A. A., Tsappidi, S., Cotsonis, G., Lynn, M. J., Cloft, H. J. (2010) Risk Factors Associated With Severity and Location of Intracranial Arterial Stenosis. Stroke, 41(8):1636-40.

Hurford, R., Wolters, F. J., Li, L., Lau, K. K., Küker, W., & Rothwell, P. M. (2020). Prevalence, predictors, and prognosis of symptomatic intracranial stenosis in patients with transient ischemic attack or minor stroke: A population based cohort study. The Lancet Neurology, 19(5), 413–421.

Article  PubMed  PubMed Central  Google Scholar 

Johnson, C. O., Nguyen, M., Roth, G. A., Nichols, E., Alam, T., Abate, D., et al. (2019). Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the global burden of Disease Study 2016. The Lancet Neurology, 18(5), 439–458.

Article  Google Scholar 

Iversen, M. V., Ingebrigtsen, T., Totland, J. A., Kloster, R., & Isaksen, J. G. (2022). Outcome of Aneurysmal Subarachnoid Hemorrhage in a Population-Based Cohort: Retrospective Registry Study. Stroke: Vascular and Interventional Neurology, 2(1).

Øie, L. R., Solheim, O., Majewska, P., Nordseth, T., Müller, T. B., Carlsen, S. M., et al. (2020). Incidence and case fatality of aneurysmal subarachnoid hemorrhage admitted to hospital between 2008 and 2014 in Norway. Acta Neurochirurgica, 162, 2251–2259.

Article  PubMed  PubMed Central  Google Scholar 

Choi, C., Lee, D., Lee, J., Pyun, H., Kang, D., Kwon, S., et al. (2007). Detection of intracranial atherosclerotic steno-occlusive disease with 3D time-of flight magnetic resonance angiography with sensitivity encoding at 3T. American Journal of Neuroradiology, 28(3), 439–446.

CAS  PubMed  PubMed Central  Google Scholar 

Isoda, H., Takehara, Y., Isogai, S., Masunaga, H., Takeda, H., Nozaki, A., et al. (2000). MRA of intracranial aneurysm models: A comparison of contrast enhanced three-dimensional MRA with time-of-flight MRA. Journal of Computer Assisted Tomography, 24(2), 308–315.

Article  CAS  PubMed  Google Scholar 

McDonald, R. J., Schwartz, K. M., Eckel, L. J., Diehn, F. E., Hunt, C. H., Bartholmai, B. J., et al. (2015). The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Academic Radiology, 22(9), 1191–1198.

Article  PubMed  Google Scholar 

Joo, B., Ahn, S. S., Yoon, P. H., Bae, S., Sohn, B., Lee, Y. E., et al. (2020). A deep learning algorithm may automate intracranial aneurysm detection on MR Angiography with high diagnostic performance. European Radiology, 30, 5785–5793.

Article  PubMed  Google Scholar 

Qiu, J., Tan, G., Lin, Y., Guan, J., Dai, Z., Wang, F., et al. (2022). Automated detection of intracranial artery stenosis and occlusion in magnetic resonance angiography: A preliminary study based on deep learning. Magnetic Resonance Imaging, 94, 105–111.

Article  PubMed  Google Scholar 

Johnsen, L. H., Herder, M., Vangberg, T., Isaksen, J. G., & Mathiesen, E. B. (2023). Prevalence of intracranial artery stenosis in a general population using 3D time of flight magnetic resonance angiography. Journal of Stroke and Cerebrovascular Diseases, 32(12), 107399.

Article  PubMed  Google Scholar 

Chimowitz, M. I., Lynn, M. J., Howlett-Smith, H., Stern, B. J., Hertzberg, V. S., Frankel, M. R., et al. (2005). Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. New England Journal of Medicine, 352(13), 1305–1316.

Article  CAS  PubMed  Google Scholar 

You, S. H., Kim, B., Yang, K. S., Kim, B. K., Woo, S., & Park, S. E. (2022). Development and validation of visual grading system for stenosis in intracranial atherosclerotic disease on time-of-flight magnetic resonance angiography. European Radiology. :1–10.

Samuels, O. B., Joseph, G. J., Lynn, M. J., Smith, H. A., & Chimowitz, M. I. (2000). A standardized method for measuring intracranial arterial stenosis. American Journal of Neuroradiology, 21(4), 643–646.

CAS  PubMed  PubMed Central  Google Scholar 

Johnsen, L. H., Herder, M., Vangberg, T., Kloster, R., Ingebrigtsen, T., Isaksen, J. G., et al. (2022). Prevalence of unruptured intracranial aneurysms: Impact of different definitions–the Tromsø Study. Journal of Neurology Neurosurgery & Psychiatry, 93(8), 902–907.

Article  Google Scholar 

Hoopes, A., Mora, J. S., Dalca, A. V., Fischl, B., & Hoffmann, M. (2022). SynthStrip: Skull-stripping for any brain image. Neuroimage, 260, 119474.

Article  PubMed  Google Scholar 

Mouches, P., & Forkert, N. D. (2019). A statistical atlas of cerebral arteries generated using multi-center MRA datasets from healthy subjects. Scientific Data, 6(1), 29.

Article  PubMed  PubMed Central  Google Scholar 

Cui, Y., Huang, H., Liu, J., Zhao, M., Li, C., Han, X., et al. (2024). FFCM-MRF: An accurate and generalizable cerebrovascular segmentation pipeline for humans and rhesus monkeys based on TOF-MRA. Computers in Biology and Medicine, 170, 107996.

Article  PubMed  Google Scholar 

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, inception resnet and the impact of residual connections on learning. In: Proceedings of the AAAI conference on Artificial Intelligence. vol. 31.

Kingma, D. P., Ba, J., & Adam (2014). A method for stochastic optimization. arXiv Preprint arXiv:14126980.

Wiebers, D. O. (2003). Unruptured intracranial aneurysms: Natural history, clinical outcome, and risks of surgical and endovascular treatment. The Lancet, 362(9378), 103–110.

Article  Google Scholar 

Bijlenga, P., Ebeling, C., Jaegersberg, M., Summers, P., Rogers, A., Waterworth, A., et al. (2013). Risk of rupture of small anterior communicating artery aneurysms is similar to posterior circulation aneurysms. Stroke, 44(11), 3018–3026.

Guggenmoos-Holzmann, I., & van Houwelingen, H. C. (2000). The (in) validity of sensitivity and specificity. Statistics in Medicine, 19(13), 1783–1792.

Article  CAS  PubMed  Google Scholar 

Nakao, T., Hanaoka, S., Nomura, Y., Sato, I., Nemoto, M., Miki, S. (2018) Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. Journal of Magnetic Resonance Imaging, 47(4):948–953.

Claux, F., Baudouin, M., Bogey, C., & Rouchaud, A. (2023). Dense, deep learning based intracranial aneurysm detection on TOF MRI using two-stage regularized U-Net. Journal of Neuroradiology, 50(1), 9–15.

Lehnen, N. C., Haase, R., Schmeel, F. C., Vatter, H., Dorn, F., Radbruch, A., & Paech, D. (2022). Automated detection of cerebral aneurysms on TOF-MRA using a deep learning approach: An external validation study. American Journal of Neuroradiology, 43(12), 1700−1705.

Ueda, D., Yamamoto, A., Nishimori, M., Shimono, T., Doishita, S., Shimazaki, A. (2019). Deep Learning for MR Angiography: Automated Detection of Cerebral Aneurysms. Radiology, 290(1):187 – 94. Available from: http: https://doi.org/10.1148/radiol.2018180901

Li, Y., Zhang, H., Sun, Y., Fan, Q., Wang, L., Ji, C., HuiGu, Chen, B., Zhao, S., Wang, D., Yu, P., Li, J., Yang, S., Zhang, C., & Wang, X. (2024). Deep learning-based platform performs high detection sensitivity of intracranial aneurysms in 3D brain TOF-MRA: An external clinical validation study. International Journal of Medical Informatics, 188, 105487

Chung, H., Kang, K. M., Al-Masni, M. A., Sohn, C. H., Nam, Y., Ryu, K., et al. (2020). Stenosis detection from time-of-flight magnetic resonance angiography via deep learning 3d squeeze and excitation residual networks. Ieee Access : Practical Innovations, Open Solutions, 8, 43325–43335.

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition; pp. 7132-41.

Banik, D., Bhattacharjee, D., & Nasipuri, M. (2020). A multi-scale patch-based deep learning system for polyp segmentation. Advanced Computing and Systems for Security, Volume Twelve, 109–119.

Article  Google Scholar 

留言 (0)

沒有登入
gif