Predicting Paediatric Brain Disorders from MRI Images Using Advanced Deep Learning Techniques

Aljohani, M., Bahgat, W. M., Balaha, H. M., AbdulAzeem, Y., El-Abd, M., Badawy, M., & Elhosseini, M. A. (2024). An Automated Metaheuristic-optimized Approach for Diagnosing and Classifying Brain Tumors Based on a Convolutional Neural Network. Results in Engineering, 102459.

Amin, J., Sharif, M., Raza, M., & Yasmin, M. (2024). Detection of brain tumor based on features fusion and machine learning. Journal of Ambient Intelligence and Humanized Computing, 1–17.

Anantharajan, S., Gunasekaran, S., Subramanian, T., & Venkatesh, R. (2024). MRI brain tumor detection using deep learning and machine learning approaches. Measurement: Sensors, 31, 101026.

Asswin, C. R., KS, D. K., Dora, A., Ravi, V., Soymya, V., Gopalakrishnan, E. A., & Soman, K. P. (2023). Transfer learning approach for pediatric pneumonia diagnosis using channel attention deep CNN architectures. Engineering Applications of Artificial Intelligence, 123, 106416.

Article  Google Scholar 

Babalola, T., Sanguedolce, G., Dipper, L., & Botting, N. (2024). Barriers and Facilitators of Healthcare Access for Autistic Children in the UK: a Systematic Review. Review Journal of Autism and Developmental Disorders, 1–29.

Batool, A., & Byun, Y. C. (2023). Lightweight EfficientNetB3 model based on depthwise separable convolutions for enhancing classification of leukemia white blood cell images. IEEE Access.

Buz-Yalug, B., Turhan, G., Cetin, A. I., Dindar, S. S., Danyeli, A. E., Yakicier, C., ... & Ozturk-Isik, E. (2024). Identification of IDH and TERTp mutations using dynamic susceptibility contrast MRI with deep learning in 162 gliomas. European Journal of Radiology, 170, 111257.

Demir, K., Arı, B., & Demir, F. (2023). Detection of brain tumor with a pre-trained deep learning model based on feature selection using MR images. Firat University Journal of Experimental and Computational Engineering, 2(1), 23–31.

Article  Google Scholar 

Egesa, W. I., Nakalema, G., Waibi, W. M., Turyasiima, M., Amuje, E., Kiconco, G., ... & Asiimwe, D. (2022). Sickle cell disease in children and adolescents: a review of the historical, clinical, and public health perspective of sub‐Saharan Africa and beyond. International Journal of Pediatrics, 2022(1), 3885979.

Frosch, C. A., Schoppe-Sullivan, S. J., & O’Banion, D. D. (2021). Parenting and child development: A relational health perspective. American Journal of Lifestyle Medicine, 15(1), 45–59.

Article  PubMed  Google Scholar 

Health and child development. (2021). https://www.unicef.org/health/health-and-child-development.  Accessed Mar 2023

Joshi, A. A., & Aziz, R. M. (2024). Deep learning approach for brain tumor classification using metaheuristic optimization with gene expression data. International Journal of Imaging Systems and Technology, 34(2), e23007.

Article  Google Scholar 

Kaur, D., Singh, S., Mansoor, W., Kumar, Y., Verma, S., Dash, S., & Koul, A. (2022). Computational intelligence and metaheuristic techniques for brain tumor detection through IoMT-enabled MRI devices. Wireless Communications & Mobile Computing (Online), 2022.

Kaur, I., Kumar, Y., Sandhu, A. K., et al (2023). Predictive modeling of epidemic diseases based on vector-borne diseases using artificial intelligence techniques. In Computational intelligence in medical decision making and diagnosis (pp. 81–100). CRC Press.

Khan, S. U. R., Zhao, M., Asif, S., & Chen, X. (2024). Hybrid-NET: A fusion of DenseNet169 and advanced machine learning classifiers for enhanced brain tumor diagnosis. International Journal of Imaging Systems and Technology, 34(1), e22975.

Article  Google Scholar 

Kong, X., Mao, Y., Xi, F., Li, Y., Luo, Y., & Ma, J. (2024). Nomograms Based on MRI Radiomics for Differential Diagnosis and Predicting BRAFV600E Expression in Pleomorphic Xanthoastrocytoma and Ganglioglioma. Academic Radiology, 31(3), 1069–1081.

Article  Google Scholar 

Koul, A., Bawa, R. K., & Kumar, Y. (2022). Artificial intelligence in medical image processing for airway diseases. Connected e-Health: Integrated IoT and cloud computing (pp. 217–254). Springer International Publishing.

Chapter  Google Scholar 

Koul, A., Bawa, R. K., & Kumar, Y. (2023a). Artificial intelligence techniques to predict the airway disorders illness: A systematic review. Archives of Computational Methods in Engineering, 30(2), 831–864.

Article  PubMed  Google Scholar 

Koul, A., Bawa, R. K., & Kumar, Y. (2023b). Automatic Detection and Classification System for Mesothelioma Cancer Using Deep Learning Models with HPO. In International Conference on Advances in Data-driven Computing and Intelligent Systems (pp. 143-156). Singapore: Springer Nature Singapore.

Koul, A., Bawa, R. K., & Kumar, Y. (2024a). An analysis of deep transfer learning-based approaches for prediction and prognosis of multiple respiratory diseases using pulmonary images. Archives of Computational Methods in Engineering, 31(2), 1023–1049.

Article  Google Scholar 

Koul, A., Bawa, R. K., & Kumar, Y. (2024b). Enhancing the detection of airway disease by applying deep learning and explainable artificial intelligence. Multimedia Tools and Applications, 1–33.

Krishna, P. R., Prasad, V. V. K. D. V., & Battula, T. K. (2023). Optimization empowered hierarchical residual VGGNet19 network for multi-class brain tumour classification. Multimedia Tools and Applications, 82(11), 16691–16716.

Article  Google Scholar 

Kumar, Y., Kaur, I., & Mishra, S. (2024). Foodborne disease symptoms, diagnostics, and predictions using artificial intelligence-based learning approaches: A systematic review. Archives of Computational Methods in Engineering, 31(2), 553–578.

Article  Google Scholar 

Laukamp, K. R., Thiele, F., Shakirin, G., Zopfs, D., Faymonville, A., Timmer, M., ... & Borggrefe, J. (2019). Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI. European radiology, 29, 124–132.

Long, S. S., Prober, C. G., Fischer, M., & Kimberlin, D. (Eds.). (2022). Principles and practice of pediatric infectious diseases E-Book. Elsevier Health Sciences.

Mahajan, A., Burrewar, M., Agarwal, U., Kss, B., Mlv, A., Guha, A., ... & Moiyadi, A. (2023). Deep learning based clinico-radiological model for paediatric brain tumor detection and subtype prediction. Exploration of Targeted Anti-tumor Therapy, 4(4), 669.

Mahmud, M. I., Mamun, M., & Abdelgawad, A. (2023). A deep analysis of brain tumor detection from mr images using deep learning networks. Algorithms, 16(4), 176.

Article  Google Scholar 

Mehta, K., Gaur, S., Maheshwari, S., Chugh, H., & Anibhushan Kumar, M. (2023, April). Big Data Analytics Cloud based Smart IoT Healthcare Network. In 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 437-443). IEEE.

Mitchell, R. J., McMaugh, A., Herkes, G., Homaira, N., Hng, T. M., Cameron, C. M., & Lystad, R. P. (2022). Hospital service use for young people with chronic health conditions: A population-based matched retrospective cohort study. Journal of Paediatrics and Child Health, 58(8), 1439–1446.

Article  PubMed  PubMed Central  Google Scholar 

Mohanty, B. C., Subudhi, P. K., Dash, R., & Mohanty, B. (2024). Feature-enhanced deep learning technique with soft attention for MRI-based brain tumor classification. International Journal of Information Technology, 16(3), 1617–1626.

Article  Google Scholar 

Noreen, N., Palaniappan, S., Qayyum, A., Ahmad, I., & Alassafi, M. O. (2021). Brain Tumor Classification Based on Fine-Tuned Models and the Ensemble Method. Computers, Materials & Continua, 67(3).

Panda, S. K., Chandrasekhar, A., Gantayat, P. K., & Panda, M. R. (2022). Detecting brain tumor using image segmentation: A novel approach. In Data Engineering and Intelligent Computing: Proceedings of 5th ICICC 2021, Volume 1 (pp. 351–362). Singapore: Springer Nature Singapore.

Priyadarshini, P., Kanungo, P., & Kar, T. (2024). Multigrade brain tumor classification in MRI images using fine tuned EfficientNet. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 8, 100498.

Rajak, P., Jangde, A. S., & Gupta, G. P. (2023). Towards Design of Brain Tumor Detection Framework Using Deep Transfer Learning Techniques. In Convergence of Big Data Technologies and Computational Intelligent Techniques (pp. 90–103). IGI Global.

Rutherford, M., Maciver, D., Johnston, L., Prior, S., & Forsyth, K. (2021). Development of a pathway for multidisciplinary neurodevelopmental assessment and diagnosis in children and young people. Children, 8(11), 1033.

Article  PubMed  Google Scholar 

Singh, J., Sandhu, J. K., & Kumar, Y. (2024a). An analysis of detection and diagnosis of different classes of skin diseases using artificial intelligence-based learning approaches with hyper parameters. Archives of Computational Methods in Engineering, 31(2), 1051–1078.

Singh, Y. P., & Lobiyal, D. K. (2024b). A comparative analysis and classification of cancerous brain tumors detection based on classical machine learning and deep transfer learning models. Multimedia Tools and Applications, 83(13), 39537–39562.

Article  Google Scholar 

Sunsuhi, G. S., & Jose, S. A. (2022). An Adaptive Eroded Deep Convolutional neural network for brain image segmentation and classification using Inception ResnetV2. Biomedical Signal Processing and Control, 78, 103863.

Article  Google Scholar 

Ver Berne, J., Saadi, S. B., Politis, C., & Jacobs, R. (2023). A deep learning approach for radiological detection and classification of radicular cysts and periapical granulomas. Journal of Dentistry, 135, 104581.

Article  PubMed  Google Scholar 

Wiestler, B., Bison, B., Behrens, L., Tüchert, S., Metz, M., Griessmair, M., & Frühwald, M. (2024). Human-Level Differentiation of Medulloblastoma from Pilocytic Astrocytoma: A Real-World Multicenter Pilot Study. Cancers, 16(8), 1474.

Article  PubMed  PubMed Central  Google Scholar 

Yang, L., Wang, T., Zhang, J., Kang, S., Xu, S., & Wang, K. (2024). Deep learning–based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features. BMC Medical Imaging, 24(1), 56.

Article  CAS  Google Scholar 

Ye, N., Yang, Q., Chen, Z., Teng, C., Liu, P., Liu, X., & Li, X. (2022). Classification of gliomas and germinomas of the basal ganglia by transfer learning. Frontiers in Oncology, 12, 844197.

Article  Google Scholar 

留言 (0)

沒有登入
gif