Abriel H, Loffing J, Rebhun JF, Pratt JH, Schild L, Horisberger JD, Rotin D, Staub O (1999) Defective regulation of the epithelial Na + channel by Nedd4 in Liddle’s syndrome. J Clin Invest 103(5):667–673. https://doi.org/10.1172/JCI5713
Article PubMed PubMed Central CAS Google Scholar
Ali SF, Newport GD, Holson RR, Slikker W, Bowyer JF (1994) Low environmental temperatures or pharmacologic agents that produce hypothermia decrease methamphetamine neurotoxicity in mice. Brain Res 658(1–2):33–38. https://doi.org/10.1016/s0006-8993(09)90007-5
Article PubMed CAS Google Scholar
Asanuma M, Tsuji T, Miyazaki I, Miyoshi K, Ogawa N (2003) Methamphetamine-induced neurotoxicity in mouse brain is attenuated by ketoprofen, a non-steroidal anti-inflammatory drug. Neurosci Lett 352(1):13–16. https://doi.org/10.1016/j.neulet.2003.08.015
Article PubMed CAS Google Scholar
Asanuma M, Miyazaki I, Higashi Y, Tsuji T, Ogawa N (2004) Specific gene expression and possible involvement of inflammation in methamphetamine-induced neurotoxicity. Ann N Y Acad Sci 1025:69–75. https://doi.org/10.1196/annals.1316.009
Article PubMed CAS Google Scholar
Beauvais G, Atwell K, Jayanthi S, Ladenheim B, Cadet JL (2011) Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways. PLoS ONE 6(12):e28946. https://doi.org/10.1371/journal.pone.0028946
Article PubMed PubMed Central CAS Google Scholar
Brown JM, Quinton MS, Yamamoto BK (2005) Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. J Neurochem 95(2):429–436. https://doi.org/10.1111/j.1471-4159.2005.03379.x
Article PubMed CAS Google Scholar
Cadet JL, Jayanthi S, Deng X (2003) Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. FASEB J 17(13):1775–1788. https://doi.org/10.1096/fj.03-0073rev
Article PubMed CAS Google Scholar
Cadet JL, Jayanthi S, Deng X (2005) Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Rev Neurotox Res 8(3–4):199–206. https://doi.org/10.1007/BF03033973
Castino R, Lazzeri G, Lenzi P, Bellio N, Follo C, Ferrucci M, Fornai F, Isidoro C (2008) Suppression of autophagy precipitates neuronal cell death following low doses of methamphetamine. J Neurochem 106(3):1426–1439. https://doi.org/10.1111/j.1471-4159.2008.05488.x
Article PubMed CAS Google Scholar
Dang DK, Shin EJ, Nam Y, Ryoo S, Jeong JH, Jang CG, Nabeshima T, Hong JS, Kim HC (2016) Apocynin prevents mitochondrial burdens, microglial activation, and pro-apoptosis induced by a toxic dose of methamphetamine in the striatum of mice via inhibition of p47phox activation by ERK. J Neuroinflammation 13:12. https://doi.org/10.1186/s12974-016-0478-x
Article PubMed PubMed Central CAS Google Scholar
Davies SE, Hallett PJ, Moens T, Smith G, Mangano E, Kim HT, Goldberg AL, Liu JL, Isacson O, Tofaris GK (2014) Enhanced ubiquitin-dependent degradation by Nedd4 protects against α-synuclein accumulation and toxicity in animal models of Parkinson’s disease. Neurobiol Dis 64(100):79–87. https://doi.org/10.1016/j.nbd.2013.12.011
Article PubMed PubMed Central CAS Google Scholar
Deng X, Cai NS, McCoy MT, Chen W, Trush MA, Cadet JL (2002) Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology 42(6):837–845. https://doi.org/10.1016/s0028-3908(02)00034-5
Article PubMed CAS Google Scholar
Drinjakovic J, Jung H, Campbell DS, Strochlic L, Dwivedy A, Holt CE (2010) E3 ligase Nedd4 promotes axon branching by downregulating PTEN. Neuron 65(3):341–357. https://doi.org/10.1016/j.neuron.2010.01.017
Article PubMed PubMed Central CAS Google Scholar
Fantegrossi WE, Ciullo JR, Wakabayashi KT, De La Garza R, Traynor JR, Woods JH (2008) A comparison of the physiological, behavioral, neurochemical and microglial effects of methamphetamine and 3,4-methylenedioxymethamphetamine in the mouse. Neuroscience 151(2):533–543. https://doi.org/10.1016/j.neuroscience.2007.11.007
Article PubMed CAS Google Scholar
Foot NJ, Dalton HE, Shearwin-Whyatt LM, Dorstyn L, Tan SS, Yang B, Kumar S (2008) Regulation of the divalent metal ion transporter DMT1 and iron homeostasis by a ubiquitin-dependent mechanism involving Ndfips and WWP2. Blood 112(10):4268–4275. https://doi.org/10.1182/blood-2008-04-150953
Article PubMed CAS Google Scholar
Foot NJ, Leong YA, Dorstyn LE, Dalton HE, Ho K, Zhao L, Garrick MD, Yang B, Hiwase D, Kumar S (2011) Ndfip1-deficient mice have impaired DMT1 regulation and iron homeostasis. Blood 117(2):638–646. https://doi.org/10.1182/blood-2010-07-295287
Article PubMed CAS Google Scholar
Fornai F, Lenzi P, Gesi M, Ferrucci M, Lazzeri G, Capobianco L, de Blasi A, Battaglia G, Nicoletti F, Ruggieri S, Paparelli A (2004a) Similarities between methamphetamine toxicity and proteasome inhibition. Ann N Y Acad Sci 1025:162–170. https://doi.org/10.1196/annals.1316.021
Article PubMed CAS Google Scholar
Fornai F, Lenzi P, Gesi M, Soldani P, Ferrucci M, Lazzeri G, Capobianco L, Battaglia G, De Blasi A, Nicoletti F, Paparelli A (2004b) Methamphetamine produces neuronal inclusions in the nigrostriatal system and in PC12 cells. J Neurochem 88(1):114–123. https://doi.org/10.1046/j.1471-4159.2003.02137.x
Article PubMed CAS Google Scholar
Fornai F, Lenzi P, Ferrucci M, Lazzeri G, di Poggio AB, Natale G, Busceti CL, Biagioni F, Giusiani M, Ruggieri S, Paparelli A (2005) Occurrence of neuronal inclusions combined with increased nigral expression of alpha-synuclein within dopaminergic neurons following treatment with amphetamine derivatives in mice. Brain Res Bull 65(5):405–413. https://doi.org/10.1016/j.brainresbull.2005.02.022
Article PubMed CAS Google Scholar
Granado N, Lastres-Becker I, Ares-Santos S, Oliva I, Martin E, Cuadrado A, Moratalla R (2011) Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum. Glia 59(12):1850–1863. https://doi.org/10.1002/glia.21229
Haouari S, Vourc’h P, Jeanne M, Marouillat S, Veyrat-Durebex C, Lanznaster D, Laumonnier F, Corcia P, Blasco H, Andres CR (2022) The Roles of NEDD4 Subfamily of HECT E3 Ubiquitin Ligases in Neurodevelopment and Neurodegeneration. Int J Mol Sci 23(7):3882. https://doi.org/10.3390/ijms23073882
Harvey KF, Dinudom A, Cook DI, Kumar S (2001) The Nedd4-like protein KIAA0439 is a potential regulator of the epithelial sodium channel. J Biol Chem 276(11):8597–8601. https://doi.org/10.1074/jbc.C000906200
Article PubMed CAS Google Scholar
Harvey KF, Shearwin-Whyatt LM, Fotia A, Parton RG, Kumar S (2002) N4WBP5, a potential target for ubiquitination by the Nedd4 family of proteins, is a novel Golgi-associated protein. J Biol Chem 277(11):9307–9317. https://doi.org/10.1074/jbc.M110443200
Article PubMed CAS Google Scholar
Howitt J, Putz U, Lackovic J, Doan A, Dorstyn L, Cheng H, Yang B, Chan-Ling T, Silke J, Kumar S, Tan SS (2009) Divalent metal transporter 1 (DMT1) regulation by Ndfip1 prevents metal toxicity in human neurons. Proc Natl Acad Sci U S A 106(36):15489–15494. https://doi.org/10.1073/pnas.0904880106
Article PubMed PubMed Central Google Scholar
Howitt J, Lackovic J, Low LH, Naguib A, Macintyre A, Goh CP, Callaway JK, Hammond V, Thomas T, Dixon M, Putz U, Silke J, Bartlett P, Yang B, Kumar S, Trotman LC, Tan SS (2012) Ndfip1 regulates nuclear Pten import in vivo to promote neuronal survival following cerebral ischemia. J Cell Biol 196(1):29–36. https://doi.org/10.1083/jcb.201105009
Article PubMed PubMed Central CAS Google Scholar
Howitt J, Gysbers AM, Ayton S, Carew-Jones F, Putz U, Finkelstein DI, Halliday GM, Tan SS (2014) Increased Ndfip1 in the substantia nigra of Parkinsonian brains is associated with elevated iron levels. PLoS ONE 9(1):e87119. https://doi.org/10.1371/journal.pone.0087119
Article PubMed PubMed Central CAS Google Scholar
Hozumi H, Asanuma M, Miyazaki
留言 (0)