Aarset AV (1982) Freezing tolerance in intertidal invertebrates (a review). Comp Biochem Physiol Physiol 73(4):571–580. https://doi.org/10.1016/0300-9629(82)90264-X
Ansart A, Vernon P (2003) Cold hardiness in molluscs. Acta Oecol 24(2):95–102. https://doi.org/10.1016/S1146-609X(03)00045-6
Ansart A, Vernon P (2004) Cold hardiness abilities vary with the size of the land snail Cornu Aspersum. Comp Biochem Physiol Mol Integr Physiol 139(2):205–211. https://doi.org/10.1016/j.cbpb.2004.09.003
Ansart A, Vernon P, Daguzan J (2001) Photoperiod is the main cue that triggers supercooling ability in the land snail, Helix aspersa (Gastropoda: Helicidae). Cryobiology 42(4):266–273. https://doi.org/10.1006/cryo.2001.2332
Article CAS PubMed Google Scholar
Berman DI, Meshcheryakova EN, Leirikh AN (2011) Cold hardiness, adaptive strategies, and invasion of slugs of the genus Deroceras (Gastropoda, Pulmonata) in northeastern Asia. Biol Bull 38(8):765–778. https://doi.org/10.1134/S1062359011080012
Bigg EK (1953) The supercooling of water. Proc Phys Soc Sect B 66(8):688. https://doi.org/10.1088/0370-1301/66/8/309
Boher F, Jaksic F, Martel S, Orellana M, Bozinovic F (2018) Does thermal physiology explain the ecological and evolutionary success of invasive species? Lessons from Ladybird beetles. Evol Ecol Res 19:243–255
Butterson S, Roe AD, Marshall KE (2021) Plasticity of cold hardiness in the eastern spruce budworm, Choristoneura fumiferana. Comp Biochem Physiol Mol Integr Physiol 259:110998. https://doi.org/10.1016/j.cbpa.2021.110998
Choi B-G, Hepat R, Kim Y (2014) RNA interference of a heat shock protein, Hsp70, loses its protection role in indirect chilling injury to the beet armyworm, Spodoptera exigua. Comp Biochem Physiol A Mol Integr Physiol 168:90–95. https://doi.org/10.1016/j.cbpa.2013.11.011
Cook R (2004) The tolerance of the field slug Deroceras reticulatum to freezing temperatures. Cryo Lett 25(3):187–194
Cowie RH, Dillon RT, Robinson DG, Smith JW (2009) Alien non-marine snails and slugs of priority quarantine importance in the United States: a preliminary risk assessment. Am Malacol Bull 27(1/2):113–132. https://doi.org/10.4003/006.027.0210
Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63:327–357. https://doi.org/10.1146/annurev.physiol.63.1.327
Article CAS PubMed Google Scholar
Gill LT, Kennedy JR, Box ICH, Marshall KE (2024) Ice in the intertidal: patterns and processes of freeze tolerance in intertidal invertebrates. J Exp Biol 227(14):jeb247043. https://doi.org/10.1242/jeb.247043
Hargens AR, Shabica SV (1973) Protection against lethal freezing temperatures by mucus in an Antarctic limpet. Cryobiology 10(4):331–337. https://doi.org/10.1016/0011-2240(73)90052-7
Article CAS PubMed Google Scholar
Hawes TC, Worland MR, Bale JS (2010) Freezing in the Antarctic limpet, Nacella Concinna. Cryobiology 61(1):128–132. https://doi.org/10.1016/j.cryobiol.2010.06.006
Article CAS PubMed Google Scholar
Jarošík V, Kenis M, Honek A, Skuhrovec J, Pyšek P (2015) Invasive insects differ from non-invasive in their thermal requirements. PLoS ONE 10(6). https://doi.org/10.1371/journal.pone.0131072
Kelley AL (2014) The role thermal physiology plays in species invasion. Conserv Physiol 2(1):cou045. https://doi.org/10.1093/conphys/cou045
Article CAS PubMed PubMed Central Google Scholar
Kennedy JR, Harley CDG, Marshall KE (2020) Drivers of plasticity in freeze tolerance in the intertidal mussel Mytilus trossulus. J Exp Biol 223(24):jeb233478. https://doi.org/10.1242/jeb.233478
King AM, MacRae TH (2015) Insect heat shock proteins during stress and diapause. Annu Rev Entomol 60:59–75. https://doi.org/10.1146/annurev-ento-011613-162107
Kucheryavskiy S (2020) Mdatools — R package for chemometrics. Chemom Intell Lab Syst 198
Kurozumi T (2002) Lehmannia valentiana. In: Ecological Society of Japan (ed) Handbook of alien species in Japan. Chijinshokan, Tokyo, Japan. p 164. (In Japanese)
Labow BI, Souba WW (2000) Glutamine. World J Surg 24(12):1503–1513. https://doi.org/10.1007/s002680010269
Article CAS PubMed Google Scholar
Lee RE (2010) A primer on insect cold-tolerance. Low Temperature Biology of insects. Cambridge University Press, Cambridge, pp 3–34
Li D, Graham LD (2007) Epidermal secretions of terrestrial flatworms and slugs: Lehmannia valentiana mucus contains matrilin-like proteins. Comp Biochem Physiol B Biochem Mol Biol 148(3):231–244. https://doi.org/10.1016/j.cbpb.2007.06.001
Article CAS PubMed Google Scholar
Mellanby K (1961) Slugs at low temperatures. Nature 189(4768):944–944. https://doi.org/10.1038/189944b0
Morales M, Murdoch D (2020) sciplot: Scientific graphing functions for factorial designs
Nicolai A, Vernon P, Lee M, Ansart A, Charrier M (2005) Supercooling ability in two populations of the land snail Helix pomatia (Gastropoda: Helicidae) and ice-nucleating activity of gut bacteria. Cryobiology 50(1):48–57. https://doi.org/10.1016/j.cryobiol.2004.10.003
Nowakowska A, Caputa M, Rogalska J (2011) Effects of temperature and photoperiod on glucose, glycerol and glycogen concentrations in Helix pomatia Linnaeus, 1758 in spring and autumn. Folia Malacol 19(3):155–163. https://doi.org/10.2478/v10125-011-0021-8
Pacheco A, Pereira C, Almeida MJ, Sousa MJ (2009) Small heat-shock protein Hsp12 contributes to yeast tolerance to freezing stress. Microbiol Read Engl 155(Pt 6):2021–2028. https://doi.org/10.1099/mic.0.025981-0
Prior DJ, Hume M, Varga D, Hess SD (1983) Physiological and behavioural aspects of water balance and respiratory function in the terrestrial slug, Limax Maximus. J Exp Biol 104(1):111–127. https://doi.org/10.1242/jeb.104.1.111
Ravanbakhsh S, Liu P, Bjordahl TC, Mandal R, Grant JR, Wilson M, Eisner R, Sinelnikov I, Hu X, Luchinat C, Greiner R, Wishart DS (2015) Accurate, fully-automated NMR spectral profiling for Metabolomics. PLoS ONE 10(5):e0124219. https://doi.org/10.1371/journal.pone.0124219
Article CAS PubMed PubMed Central Google Scholar
Riddle WA (1983) Physiological ecology of land snails and slugs. Ecology. Elsevier Inc, pp 431–461
Riddle WA, Miller VJ (1988) Cold-hardiness in several species of land snails. J Therm Biol 13(4):163–167. https://doi.org/10.1016/0306-4565(88)90028-9
Sarup P, Frydenberg J, Loeschcke V (2009) Local adaptation of stress related traits in Drosophila buzzatii and Drosophila simulans in spite of high gene flow. J Evol Biol 22(5):1111–1122. https://doi.org/10.1111/j.1420-9101.2009.01725.x
Article CAS PubMed Google Scholar
Satoh SS, Ikeda S, Yamazaki Y (2020) Multiple introduction events and artificial long-distance dispersal of the exotic slug ambigolimax valentianus in Japan. Molluscan Res 40(3):276–281. https://doi.org/10.1080/13235818.2020.1753903
Sgrò CM, Overgaard J, Kristensen TN, Mitchell KA, Cockerell FE, Hoffmann AA (2010) A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia. J Evol Biol 23(11):2484–2493. https://doi.org/10.1111/j.1420-9101.2010.02110.x
Sinclair BJ (1999) Insect cold tolerance: how many kinds of frozen? Eur J Entomol 96(2):157–164
Sinclair BJ, Coello Alvarado LE, Ferguson LV (2015) An invitation to measure insect cold tolerance: methods, approaches, and workflow. J Therm Biol 53:180–197. https://doi.org/10.1016/j.jtherbio.2015.11.003
Sinensky M (1974) Homeoviscous adaptation–a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A 71(2):522–525. https://doi.org/10.1073/pnas.71.2.522
Article CAS PubMed PubMed Central Google Scholar
Slotsbo S, Hansen LM, Jordaens K, Backeljau T, Malmendal A, Nielsen NChr, Holmstrup M (2012) Cold tolerance and freeze-induced glucose accumulation in three terrestrial slugs. Comp Biochem Physiol Mol Integr Physiol 161(4):443–449. https://doi.org/10.1016/j.cbpa.2012.01.002
Sokolova IM, Granovitch AI, Berger VJ, Johannesson K (2000) Intraspecific physiological variability of the gastropod Littorina saxatilis related to the vertical shore gradient in the White and North seas. Mar Biol 137(2):297–308.
留言 (0)