Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J, et al. The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040: new estimates from GLOBOCAN 2020. Gastroenterology. 2022;163:649–58.e2.
Chen R, Zheng R, Zhang S, Wang S, Sun K, Zeng H, et al. Patterns and trends in esophageal cancer incidence and mortality in China: an analysis based on cancer registry data. J Natl Cancer Cent. 2023;3:21–27.
Article PubMed PubMed Central Google Scholar
Conway E, Wu H, Tian L. Overview of risk factors for esophageal squamous cell carcinoma in China. Cancers. 2023;15:5604.
Article CAS PubMed PubMed Central Google Scholar
Sheikh M, Roshandel G, McCormack V, Malekzadeh R. Current status and future prospects for esophageal cancer. Cancers. 2023;15:765.
Article PubMed PubMed Central Google Scholar
Chen L, Zhu S, Liu T, Zhao X, Xiang T, Hu X, et al. Aberrant epithelial cell interaction promotes esophageal squamous-cell carcinoma development and progression. Signal Transduct Target Ther. 2023;8:453.
Article CAS PubMed PubMed Central Google Scholar
Lin D-C, Hao J-J, Nagata Y, Xu L, Shang L, Meng X, et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet. 2014;46:467–73.
Article CAS PubMed PubMed Central Google Scholar
Miao P, Sheng S, Sun X, Liu J, Huang G. Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life. 2013;65:904–10.
Article CAS PubMed Google Scholar
Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41:211–18.
Article CAS PubMed PubMed Central Google Scholar
Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 2015;356:156–64.
Article CAS PubMed Google Scholar
Cai Z, Zhao J-S, Li J-J, Peng D-N, Wang X-Y, Chen T-L, et al. A combined proteomics and metabolomics profiling of gastric cardia cancer reveals characteristic dysregulations in glucose metabolism. Mol Cell Proteom. 2010;9:2617–28.
Liu XS, Liu JM, Chen YJ, Li FY, Wu RM, Tan F, et al. Comprehensive analysis of hexokinase 2 immune infiltrates and m6A related genes in human esophageal carcinoma. Front Cell Dev Biol. 2021;9:715883.
Article PubMed PubMed Central Google Scholar
Bednarz-Misa I, Fortuna P, Fleszar MG, Lewandowski Ł, Diakowska D, Rosińczuk J, et al. Esophageal squamous cell carcinoma is accompanied by local and systemic changes in L-arginine/NO pathway. Nat Clin Pract Gastroenterol Hepatol. 2020;21:6282.
Zhu G, Guan F, Li S, Zhang Q, Zhang X, Qin Y, et al. Glutaminase potentiates the glycolysis in esophageal squamous cell carcinoma by interacting with PDK1. Mol Carcinog. 2024;63:897–911.
Article CAS PubMed Google Scholar
Yang J, Wang L, Sun H, Zhao Z, Ma Y, Hu Z, et al. Ribonucleotide reductase subunit M1 blocks glucose catabolism via phosphorylation of pyruvate kinase M2 in human esophageal squamous cell cancer. Genes Dis. 2024;11:101000.
Article CAS PubMed Google Scholar
Qian Y, Liang X, Kong P, Cheng Y, Cui H, Yan T, et al. Elevated DHODH expression promotes cell proliferation via stabilizing β-catenin in esophageal squamous cell carcinoma. Cell Death Dis. 2020;11:862.
Article CAS PubMed PubMed Central Google Scholar
Cui MY, Yi X, Cao ZZ, Zhu DX, Wu J. Targeting strategies for aberrant lipid metabolism reprogramming and the immune microenvironment in esophageal cancer: a review. J Oncol. 2022;2022:4257359.
Article PubMed PubMed Central Google Scholar
Jiao R, Jiang W, Xu K, Luo Q, Wang L, Zhao C. Lipid metabolism analysis in esophageal cancer and associated drug discovery. J Pharm Anal. 2024;14:1–15.
de Andrade Barreto E, de Souza Santos PT, Bergmann A, de Oliveira IM, Wernersbach Pinto L, Blanco T, et al. Alterations in glucose metabolism proteins responsible for the Warburg effect in esophageal squamous cell carcinoma. Exp Mol Pathol. 2016;101:66–73.
Sawayama H, Ishimoto T, Watanabe M, Yoshida N, Baba Y, Sugihara H, et al. High expression of glucose transporter 1 on primary lesions of esophageal squamous cell carcinoma is associated with hematogenous recurrence. Ann Surg Oncol. 2014;21:1756–62.
Xu S, Wei X. Knockdown of CENPN inhibits glucose metabolism and induces G1 arrest in esophageal cancer cells by regulating PI3K/AKT signaling pathway. Horm Metab Res. 2023;55:563–72.
Article CAS PubMed Google Scholar
Huang X, Liu C, Li H, Dai T, Luo G, Zhang C, et al. Hypoxia-responsive lncRNA G077640 promotes ESCC tumorigenesis via the H2AX-HIF1α-glycolysis axis. Carcinogenesis. 2023;44:383–93.
Article CAS PubMed Google Scholar
Lyu SI, Simon AG, Jung JO, Fretter C, SchrÖder W, Bruns CJ, et al. Hexokinase 2 as an independent risk factor for worse patient survival in esophageal adenocarcinoma and as a potential therapeutic target protein: a retrospective, single‑center cohort study. Oncol Lett. 2024;28:495.
Article CAS PubMed PubMed Central Google Scholar
Garcia SN, Guedes RC, Marques MM. Unlocking the potential of HK2 in cancer metabolism and therapeutics. Curr Med Chem. 2019;26:7285–322.
Article CAS PubMed Google Scholar
Wang Y, Yu Z, Shi W, Shen J, Guan Y, Ni F. HLA complex P5 upregulation is correlated with poor prognosis and tumor progression in esophageal squamous cell carcinoma. Bioengineered. 2022;13:9301–11.
Yuan ML, Ren LH, Yu XC, Dong JW, Shi RH. SIRT3 promotes the development of esophageal squamous cell carcinoma by regulating hexokinase 2 through the AKT signaling pathway. Bull Exp Biol Med. 2022;174:81–8.
Article CAS PubMed Google Scholar
Sun W, Wang D, Zu Y, Deng Y. Long noncoding RNA CASC7 is a novel regulator of glycolysis in oesophageal cancer via a miR-143-3p-mediated HK2 signalling pathway. Cell Death Discov. 2022;8:231.
Article CAS PubMed PubMed Central Google Scholar
Bao J, Wu Y, Wang L, Zhu Y. The role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 in esophageal squamous cell carcinoma. Medicine. 2020;99:e19626.
Article CAS PubMed PubMed Central Google Scholar
Liu J, Liu Z-X, Wu Q-N, Lu Y-X, Wong C-W, Miao L, et al. Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nat Commun. 2020;11:1507.
Article CAS PubMed PubMed Central Google Scholar
Vargas RE, Wang W. Significance of long non-coding RNA AGPG for the metabolism of esophageal cancer. Cancer Commun. 2020;40:313–15.
Chang YC, Yang YC, Tien CP, Yang CJ, Hsiao M. Roles of aldolase family genes in human cancers and diseases. Trends Endocrinol Metab. 2018;29:549–59.
Article CAS PubMed Google Scholar
Tao X, Chen B-l, Yan Y. Correlation between aldolase c (ALDOC) expression and the prognosis of esophageal cancer. Int J Clin Exp Pathol. 2017;10:2036–41.
Jiao J-W, Zhan X-H, Wang J-J, He L-X, Guo Z-C, Xu X-E, et al. LOXL2-dependent deacetylation of aldolase A ind
留言 (0)