Automated Lesion and Feature Extraction Pipeline for Brain MRIs with Interpretability

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B., & Varoquaux, G. (2014). Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics,14.

Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ants similarity metric performance in brain image registration. NeuroImage, 54(3), 2033–2044.

Article  PubMed  Google Scholar 

Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.T., Berger, C., Ha, S.M., & Rozycki, M., et al. (2018). Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv:1811.02629

Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J. S., Freymann, J. B., Farahani, K., & Davatzikos, C. (2017). Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Scientific Data, 4(1), 1–13.

Article  Google Scholar 

Barajas, R., Rubenstein, J., Chang, J., Hwang, J., & Cha, S. (2010). Diffusion-weighted mr imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. American Journal of Neuroradiology, 31(1), 60–66.

Article  PubMed  PubMed Central  Google Scholar 

Biggs, M., Wang, Y., Soni, N., Priya, S., Bathla, G., & Canahuate, G. (2023). Evaluating autoencoders for dimensionality reduction of mri-derived radiomics and classification of malignant brain tumors. In: Proceedings of the 35th international conference on scientific and statistical database management (pp. 1–11)

Billot, B., Greve, D. N., Puonti, O., Thielscher, A., Van Leemput, K., Fischl, B., Dalca, A. V., Iglesias, J. E., et al. (2023). Synthseg: Segmentation of brain mri scans of any contrast and resolution without retraining. Medical Image Analysis, 86, 102789.

Article  PubMed  PubMed Central  Google Scholar 

Calabrese, E., Rudie, J. D., Rauschecker, A. M., Villanueva-Meyer, J. E., Clarke, J. L., Solomon, D. A., & Cha, S. (2022). Combining radiomics and deep convolutional neural network features from preoperative mri for predicting clinically relevant genetic biomarkers in glioblastoma. Neuro-Oncology Advances, 4(1), 060.

Article  Google Scholar 

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607 . PMLR

Curtin, L., Whitmire, P., White, H., Bond, K. M., Mrugala, M. M., Hu, L. S., & Swanson, K. R. (2021). Shape matters: morphological metrics of glioblastoma imaging abnormalities as biomarkers of prognosis. Scientific Reports, 11(1), 23202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Destito, M., Marzullo, A., Leone, R., Zaffino, P., Steffanoni, S., Erbella, F., Calimeri, F., Anzalone, N., De Momi, E., Ferreri, A. J., et al. (2023). Radiomics-based machine learning model for predicting overall and progression-free survival in rare cancer: a case study for primary cns lymphoma patients. Bioengineering, 10(3), 285.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fathi Kazerooni, A., Saxena, S., Toorens, E., Tu, D., Bashyam, V., Akbari, H., Mamourian, E., Sako, C., Koumenis, C., Verginadis, I., et al. (2022). Clinical measures, radiomics, and genomics offer synergistic value in ai-based prediction of overall survival in patients with glioblastoma. Scientific Reports, 12(1), 8784.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fischl, B. (2012). Freesurfer Neuroimage, 62(2), 774–781.

Article  PubMed  Google Scholar 

Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: images are more than pictures, they are data. Radiology, 278(2), 563–577.

Article  PubMed  Google Scholar 

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., & Ghosh, S. S. (2011). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in Neuroinformatics,13.

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., Flandin, G., Ghosh, S. S., Glatard, T., Halchenko, Y. O., et al. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3(1), 1–9.

Article  Google Scholar 

Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 18(2), 203–211.

Article  CAS  PubMed  Google Scholar 

Knaap, M. S., & Valk, J. (2005). Magnetic resonance of myelination and myelin disorders. Springer.

Book  Google Scholar 

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al. (2014). The multimodal brain tumor image segmentation benchmark (brats). IEEE Transactions on Medical Imaging, 34(10), 1993–2024.

Article  PubMed  PubMed Central  Google Scholar 

Parekh, V., & Jacobs, M. A. (2016). Radiomics: a new application from established techniques. Expert Review of Precision Medicine and Drug Development, 1(2), 207–226.

Article  PubMed  PubMed Central  Google Scholar 

Rauschecker, A. M., Rudie, J. D., Xie, L., Wang, J., Duong, M. T., Botzolakis, E. J., Kovalovich, A. M., Egan, J., Cook, T. C., Bryan, R. N., et al. (2020). Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain mri. Radiology, 295(3), 626–637.

Rudie, J.D., Weiss, R.S.D.A., Nedelec, P., Calabrese, E., Colby, J.B., Laguna, B., Mongan, J., Braunstein, S., Hess, C.P., & Rauschecker, A.M., et al. (2023). The university of california san francisco, brain metastases stereotactic radiosurgery (ucsf-bmsr) mri dataset. arXiv:2304.07248

Rudie, J. D., Rauschecker, A. M., Xie, L., Wang, J., Duong, M. T., Botzolakis, E. J., Kovalovich, A., Egan, J. M., Cook, T., Bryan, R. N., et al. (2020). Subspecialty-level deep gray matter differential diagnoses with deep learning and bayesian networks on clinical brain mri: a pilot study. Radiology Artificial Intelligence, 2(5), 190146.

Van Griethuysen, J. J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G., Fillion-Robin, J.-C., Pieper, S., & Aerts, H. J. (2017). Computational radiomics system to decode the radiographic phenotype. Cancer Research, 77(21), 104–107.

Weiss, D. A., Saluja, R., Xie, L., Gee, J. C., Sugrue, L. P., Pradhan, A., Bryan, R. N., Rauschecker, A. M., & Rudie, J. D. (2021). Automated multiclass tissue segmentation of clinical brain mris with lesions. NeuroImage Clinical, 31, 102769.

Article  PubMed  PubMed Central  Google Scholar 

Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage, 31(3), 1116–1128.

Article  PubMed  Google Scholar 

Yushkevich, P. A., Pluta, J., Wang, H., Wisse, L. E., Das, S., & Wolk, D. (2016). Ic-p-174: fast automatic segmentation of hippocampal subfields and medial temporal lobe subregions in 3 tesla and 7 tesla t2-weighted mri. Alzheimer’s & Dementia, 12, 126–127.

Article  Google Scholar 

Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S. (2021). Barlow twins: Self-supervised learning via redundancy reduction. In: International conference on machine learning (pp. 12310–12320). PMLR

留言 (0)

沒有登入
gif