Akula, S. K., Exposito-Alonso, D., & Walsh, C. A. (2023). Shaping the brain: The emergence of cortical structure andfolding. Developmental Cell, 58(24), 2836–2849.
Article CAS PubMed PubMed Central Google Scholar
Amiez, C., & Petrides, M. (2018). Functional rostro-caudal gradient in the human posterior lateral frontal cortex. Brain Structure and Function, 223(3), 1487–1499.
Borne, L., Rivière, D., Mancip, M., & Mangin, J.-F. (2020). Automatic labeling of cortical sulci using patch-or cnn-based segmentation techniques combined with bottom-up geometric constraints. Medical Image Analysis, 62, 101651.
Chen, S., Ma, K., & Zheng, Y. (2019). Med3d: Transfer learning for 3d medical image analysis. arXiv preprint arXiv:1904.00625
Cointepas, Y., Mangin, J.-F., Garnero, L., Poline, J.-B., & Benali, H. (2001). Brainvisa: Software platform for visualization and analysis of multi-modality brain data. Neuroimage, 13(6), 98.
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest. Neuroimage, 31(3), 968–980.
Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage, 53(1), 1–15.
Fedorenko, E., & Blank, I. A. (2020). Broca’s area is not a natural kind. Trends in Cognitive Sciences, 24(4), 270–284.
Article PubMed PubMed Central Google Scholar
Fernández, V., & Borrell, V. (2023). Developmental mechanisms of gyrification. Current Opinion in Neurobiology, 80, 102711.
Garrison, J. R., Fernyhough, C., McCarthy-Jones, S., Haggard, M., 7, A. S. R. B. C. V...S. U.. S. R.. J. A.. M. B.. M. P.. C. S.. H. F.. P. C...L. C., & Simons, J. S. (2015). Paracingulate sulcus morphology is associated with hallucinations in the human brain. Nature communications, 6(1), 8956.
Gaser, C., Dahnke, R., Thompson, P. M., Kurth, F., Luders, E., & Initiative, A. D. N. (2022). Cat–a computational anatomy toolbox for the analysis of structural mri data. biorxiv, 2022–06.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).
IXI Dataset (2012). https://brain-development.org/ixi-dataset/
Keller, S. S., Crow, T., Foundas, A., Amunts, K., & Roberts, N. (2009). Broca’s area: Nomenclature, anatomy, typology and asymmetry. Brain and Language, 109(1), 29–48.
Keller, S. S., Highley, J. R., Garcia-Finana, M., Sluming, V., Rezaie, R., & Roberts, N. (2007). Sulcal variability, stereological measurement and asymmetry of broca’s area on mr images. Journal of Anatomy, 211(4), 534–555.
Article PubMed PubMed Central Google Scholar
Knaus, T. A., Corey, D. M., Bollich, A. M., Lemen, L. C., & Foundas, A. L. (2007). Anatomical asymmetries of anterior perisylvian speech-language regions. Cortex, 43(4), 499–510.
LaMontagne, P. J., Benzinger, T. L., Morris, J. C., Keefe, S., Hornbeck, R., Xiong, C., Grant, E., Hassenstab, J., Moulder, K., Vlassenko, A. G., Raichle, M. E., Cruchaga, C., & Marcus, D. (2019). Oasis-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer disease. MedRxiv, 2019–12.
Lee, P., Kim, H.-R., Jeong, Y., & Initiative, A. D. N. (2020). Detection of gray matter microstructural changes in alzheimer’s disease continuum using fiber orientation. BMC Neurology, 20, 1–10.
Li, X., Morgan, P. S., Ashburner, J., Smith, J., & Rorden, C. (2016). The first step for neuroimaging data analysis: Dicom to nifti conversion. Journal of neuroscience methods, 264, 47–56.
McCarthy, J., Collins, D. L., & Ducharme, S. (2018). Morphometric mri as a diagnostic biomarker of frontotemporal dementia: A systematic review to determine clinical applicability. NeuroImage: Clinical, 20, 685–696.
Miller, J. A., Voorhies, W. I., Lurie, D. J., D’Esposito, M., & Weiner, K. S. (2021). Overlooked tertiary sulci serve as a meso-scale link between microstructural and functional properties of human lateral prefrontal cortex. Journal of Neuroscience, 41(10), 2229–2244.
Article CAS PubMed Google Scholar
Miller, J. A., & Weiner, K. S. (2022). Unfolding the evolution of human cognition. Trends in Cognitive Sciences, 26(9), 735–737.
Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C., Jagust, W., Trojanowski, J. Q., Toga, A. W., & Beckett, L. (2005). The alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics, 15(4), 869–877.
Ono, M., Kubik, S., & Abernathey, C. D. (1990). Atlas of the Cerebral Sulci. New York: Thieme.
Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols, T. E. (2011). Statistical Parametric Mapping: The Analysis of Functional Brain Images. London: Elsevier.
Pérez-García, F., Sparks, R., & Ourselin, S. (2021). Torchio: A python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Computer Methods and Programs in Biomedicine, 208, 106236.
Article PubMed PubMed Central Google Scholar
Perrot, M., Rivière, D., & Mangin, J.-F. (2011). Cortical sulci recognition and spatial normalization. Medical image analysis, 15(4), 529–550.
Sprung-Much, T., Eichert, N., Nolan, E., & Petrides, M. (2022). Broca’s area and the search for anatomical asymmetry: Commentary and perspectives. Brain Structure and Function, 227(2), 441–449.
Sprung-Much, T., & Petrides, M. (2018). Morphological patterns and spatial probability maps of two defining sulci of the posterior ventrolateral frontal cortex of the human brain: The sulcus diagonalis and the anterior ascending ramus of the lateral fissure. Brain Structure and Function, 223, 4125–4152.
Troiani, V., Patti, M. A., & Adamson, K. (2020). The use of the orbitofrontal h-sulcus as a reference frame for value signals. European Journal of Neuroscience, 51(9), 1928–1943.
Vallejo-Azar, M. N., Alba-Ferrara, L., Bouzigues, A., Princich, J. P., Markov, M., Bendersky, M., & Gonzalez, P. N. (2023). Influence of accessory sulci of the frontoparietal operculum on gray matter quantification. Frontiers in Neuroanatomy, 16, 134.
Vijayakumari, A. A., Fernandez, H. H., & Walter, B. L. (2023). Mri-based multivariate gray matter volumetric distance for predicting motor symptom progression in parkinson’s disease. Scientific Reports, 13(1), 17704.
Article CAS PubMed PubMed Central Google Scholar
Voorhies, W. I., Miller, J. A., Yao, J. K., Bunge, S. A., & Weiner, K. S. (2021). Cognitive insights from tertiary sulci in prefrontal cortex. Nature Communications, 12(1), 5122.
Article CAS PubMed PubMed Central Google Scholar
Weiner, K. S., Golarai, G., Caspers, J., Chuapoco, M. R., Mohlberg, H., Zilles, K., Amunts, K., & Grill-Spector, K. (2014). The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. Neuroimage, 84, 453–465.
Welker, W. (1990). Why does cerebral cortex fissure and fold? a review of determinants of gyri and sulci. Cerebral Cortex: comparative structure and evolution of Cerebral Cortex, Part, II, 3–136.
Willbrand, E., Parker, B., Voorhies, W., Miller, J., Lyu, I., Hallock, T., Aponik-Gremillion, L., Koslov, S., Null, N., Bunge, S., Foster, B. L., & Weiner, K. S. (2022). Uncovering a tripartite landmark in posterior cingulate cortex. Science Adventure, 8, eabn9516.
Williams, L. Z., Fitzgibbon, S. P., Bozek, J., Winkler, A. M., Dimitrova, R., Poppe, T., Schuh, A., Makropoulos, A., Cupitt, J., O’Muircheartaigh, J., Duffc, E. P., Cordero-Grande, L., Price, A. N., Hajnal, J. V., Rueckert, D., Smith, S. M., Edwards, A. D., & Robinson, E. C. (2023). Structural and functional asymmetry of the neonatal cerebral cortex. Nature Human Behaviour, 1–14.
Yang, F., & Kruggel, F. (2009). A graph matching approach for labeling brain sulci using location, orientation, and shape. Neurocomputing, 73(1–3), 179–190.
Yang, S., Zhao, Z., Cui, H., Zhang, T., Zhao, L., He, Z., Liu, H., Guo, L., Liu, T., Becker, B., Kendrick, K. M., & Jiang, X. (2019). Temporal variability of cortical gyral-sulcal resting state functional activity correlates with fluid intelligence. Frontiers in Neural Circuits, 13, 36.
Article PubMed PubMed Central Google Scholar
Yao, J. K., Voorhies, W. I., Miller, J. A., Bunge, S. A., & Weiner, K. S. (2023). Sulcal depth in prefrontal cortex: A novel predictor of working memory performance. Cerebral Cortex, 33(5), 1799–1813.
Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13 (pp. 818–833). Springer.
留言 (0)