Performance of Convolutional Neural Network Models in Meningioma Segmentation in Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis

Ahmadi, M., Sharifi, A., Jafarian Fard, M., & Soleimani, N. (2023). Detection of brain lesion location in MRI images using convolutional neural network and robust PCA. International Journal of Neuroscience, 133(1), 55–66.

Article  PubMed  Google Scholar 

Alagarsamy, S., Kamatchi, K., Govindaraj, V., Zhang, Y., & Thiyagarajan, A. (2019). Multi-channeled MR brain image segmentation: A new automated approach combining BAT and clustering technique for better identification of heterogeneous tumors. Biocybernetics and Biomedical Engineering, 39(4), 1005–1035.

Article  Google Scholar 

Alexiou, G. A., Goussia, A., Voulgaris, S., & Kyritsis, A. P. (2010). Management of meningiomas. Clinical Neurology and Neurosurgery, 112(3), 177–182.

Article  PubMed  Google Scholar 

Anita, J. N., & Kumaran, S. (2022). A Deep Learning Architecture for Meningioma Brain Tumor Detection and Segmentation. Journal of Cancer Prevention, 27(3), 192–198.

Article  PubMed  PubMed Central  Google Scholar 

Aswani, K., & Menaka, D. (2021). A dual autoencoder and singular value decomposition based feature optimization for the segmentation of brain tumor from MRI images. Bmc Medical Imaging, 21(1), 82. https://doi.org/10.1186/s12880-021-00614-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aswathy, S. U., & Abraham, A. (2021). Automated Detection and Classification of Meningioma Tumor from MR images using Sea Lion optimization and deep learning models. Axioms, 11(1), 15.

Article  Google Scholar 

Balamurugan, T., & Gnanamanoharan, E. (2023). Brain tumor segmentation and classification using hybrid deep CNN with LuNetClassifier. Neural Comput & Applic, 35, 4739–4753.

Article  Google Scholar 

Boaro, A., Kaczmarzyk, J. R., Kavouridis, V. K., Harary, M., Mammi, M., Dawood, H., Shea, A., Cho, E. Y., Juvekar, P., Noh, T., Rana, A., Ghosh, S., & Arnaout, O. (2022). Deep neural networks allow expert-level brain meningioma segmentation and present potential for improvement of clinical practice. Scientific Reports, 12(1), 15462.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boelders, S. M., De Baene, W., Rutten, G., Gehring, K., & Ong, L. L. (2022). P18.08.B fully automatic meningioma segmentation using T1-weighted contrast-enhanced MR images only. Neuro-oncology (Charlottesville, Va.), 24(Supplement_2), ii95–ii96.

Borenstein, M., Hedges, L. V., Rothstein, H. R., Editors, M., & Borenstein (2009). (Hoboken, NJ, USA: Wiley), 77–86.

Borenstein, M., & Higgins, J. P. (2013). Meta-analysis and subgroups. Prevention Science, 14(2), 134–143. https://doi.org/10.1007/s11121-013-0377-7

Article  PubMed  Google Scholar 

Bouget, D., Eijgelaar, R. S., Pedersen, A., Kommers, I., Ardon, H., Barkhof, F., Bello, L., Berger, M. S., Nibali, M. C., Furtner, J., Fyllingen, E. H., Hervey-Jumper, S., Idema, A. J. S., Kiesel, B., Kloet, A., Mandonnet, E., Müller, D. M. J., Robe, P. A., Rossi, M., Sagberg, L. M., Sciortino, T., Van den Brink, W. A., Wagemakers, M., Widhalm, G., Witte, M. G., Zwinderman, A. H., Reinertsen, I., De Witt Hamer, P. C., & Solheim, O. (2021). Glioblastoma Surgery Imaging-Reporting and Data System: Validation and Performance of the Automated Segmentation Task. Cancers (Basel). ;13(18):4674.

Bouget, D., Pedersen, A., Hosainey, S. A. M., Solheim, O., & Reinertsen, I. (2021). Meningioma Segmentation in T1-Weighted MRI leveraging global context and attention mechanisms. Front Radiol, 1, 711514.

Article  PubMed  PubMed Central  Google Scholar 

Bouget, D., Pedersen, A., Hosainey, S. A. M., Vanel, J., Solheim, O., & Reinertsen, I. (2021). Fast meningioma segmentation in T1-weighted magnetic resonance imaging volumes using a lightweight 3D deep learning architecture. J Med Imaging (Bellingham), 8(2), 024002.

PubMed  Google Scholar 

Bouget, D., Pedersen, A., Jakola, A. S., Kavouridis, V., Emblem, K. E., Eijgelaar, R. S., Kommers, I., Ardon, H., Barkhof, F., Bello, L., Berger, M. S., Conti Nibali, M., Furtner, J., Hervey-Jumper, S., Idema, A. J. S., Kiesel, B., Kloet, A., Mandonnet, E., Müller, D. M. J., Robe, P. A., Rossi, M., Sciortino, T., Van den Brink, W. A., Wagemakers, M., Widhalm, G., Witte, M. G., Zwinderman, A. H., De Witt Hamer, P. C., Solheim, O., & Reinertsen, I. (2022). Preoperative Brain Tumor Imaging: Models and Software for Segmentation and Standardized Reporting. Front Neurol. ;13:932219.

Cekic, E., Pinar, E., Pinar, M., & Dagcinar, A. (2024). Deep learning-assisted segmentation and classification of brain tumor types on magnetic resonance and Surgical microscope images. World Neurosurg, 182, e196–e204.

Article  PubMed  Google Scholar 

Chen, C., Cheng, Y., Xu, J., Zhang, T., Shu, X., Huang, W., Hua, Y., Zhang, Y., Teng, Y., Zhang, L., & Xu, J. (2021). Automatic meningioma segmentation and grading prediction: A Hybrid Deep-Learning Method. J Pers Med, 11(8), 786.

Article  PubMed  PubMed Central  Google Scholar 

Chen, H., Li, S., Zhang, Y., Liu, L., Lv, X., Yi, Y., Ruan, G., Ke, C., & Feng, Y. (2022). Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: A multicentre study. European Radiology, 32(10), 7248–7259.

Article  PubMed  Google Scholar 

Chen, C., Teng, Y., Tan, S., Wang, Z., Zhang, L., & Xu, J. (2023). Performance test of a well-trained model for Meningioma Segmentation in Health Care Centers: Secondary analysis based on four Retrospective Multicenter Data sets. Journal of Medical Internet Research, 25, e44119.

Article  PubMed  PubMed Central  Google Scholar 

Clark, V. E., Erson-Omay, E. Z., Serin, A., et al. (2013). Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science, 339(6123), 1077–1080.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Ieva, A., Russo, C., Liu, S., Jian, A., Bai, M. Y., Qian, Y., & Magnussen, J. S. (2021). Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: A heuristic approach in the clinical scenario. Neuroradiology, 63(8), 1253–1262.

Article  PubMed  Google Scholar 

Divya, S., Padma Suresh, L., & John, A. (2022). Enhanced deep-joint segmentation with deep learning networks of glioma tumor for multi-grade classification using MR images. Pattern Anal Applic, 25, 891–911.

Article  Google Scholar 

Dong, Y., Wang, T., Ma, C., Li, Z., & Chellali, R. (2023). DE-UFormer: U-shaped dual encoder architectures for brain tumor segmentation. Physics in Medicine and Biology, 68(19), 195019.

Article  Google Scholar 

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An image is worth 16x16 words. Transformers for Image Recognition at Scale. arXiv (Cornell University).

Google Scholar 

Dweik, M., & Ferretti, R. (2022). Integrating anisotropic filtering, level set methods and convolutional neural networks for fully automatic segmentation of brain tumors in magnetic resonance imaging. Neuroscience Informatics, 2(3), 100095.

Article  Google Scholar 

Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in Meta-Analysis detected by a simple. Graphical Test BMJ, 315, 629–634. https://doi.org/10.1136/bmj.315.7109.629

Article  CAS  PubMed  Google Scholar 

Gab Allah, M., Sarhan, A. M., A., & Elshennawy, M., N (2023). Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information. Expert Systems with Applications, 213, 118833.

Article  Google Scholar 

Goldbrunner, R., Minniti, G., Preusser, M., et al. (2016). EANO guidelines for the diagnosis and treatment of meningiomas. The Lancet Oncology, 17(9), e383–e391.

Article  PubMed  Google Scholar 

Gryska, E., Björkman-Burtscher, I., Jakola, A. S., Dunås, T., Schneiderman, J., & Heckemann, R. A. (2022). Deep learning for automatic brain tumour segmentation on MRI: Evaluation of recommended reporting criteria via a reproduction and replication study. British Medical Journal Open, 12(7), e059000.

Google Scholar 

Gunasekara, S. R., Kaldera, H. N. T. K., & Dissanayake, M. B. (2021). A systematic approach for MRI brain tumor localization and segmentation using deep learning and active contouring. Journal of Healthcare Engineering (Print), 2021, 1–13.

Article  Google Scholar 

Haq, E. U., Jianjun, H., Huarong, X., Li, K., & Weng, L. (2022). A Hybrid Approach based on deep CNN and Machine Learning classifiers for the Tumor segmentation and classification in Brain MRI. Computational and Mathematical Methods in Medicine, 2022, 6446680.

Article  PubMed  PubMed Central  Google Scholar 

Haq, A. U., Li, J. P., Agbley, B. L. Y., Khan, A., Khan, I., Uddin, M. I., & Khan, S. (2022). IIMFCBM: Intelligent Integrated Model for feature extraction and classification of brain tumors using MRI clinical Imaging Data in IoT-Healthcare. IEEE J Biomed Health Inform, 26(10), 5004–5012.

Article  PubMed  Google Scholar 

Harary, M., Boaro, A., Kavouridis, V., Kaczmarzyk, J., Mammi, M., Dawood, H., Ghosh, S., & Arnaout, O. (2020). Automated meningioma detection and segmentation using deep neural networks. Journal of Neurological Surgery Part B, Skull Base (Internet).

Hare Krishna Mishra, Manpreet Kaur. (2022). Multi Class Brain Tumor Segmentation Based on K-Means clustering technique. Neuroquantology Volume, 20, 17.

Google Scholar 

Hatamizadeh, A., Yang, D., Roth, H., & Xu, D. (2021). UNETR: Transformers for 3D Medical Image Segmentation. arXiv (Cornell University).

Havaei, M., Davy, A., Warde-Farley, D., et al. (2017). Brain tumor segmentation with deep neural networks. Medical Image Analysis, 35, 18–31.

Article  PubMed  Google Scholar 

Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in Meta-analyses. Bmj, 327, 557–560. https://doi.org/10.1136/bmj.327.7414.557

Article  PubMed  PubMed Central  Google Scholar 

Huang, H., Liu, P., & Liu, J. (2023). TAGU-Net: Transformer convolution hybrid-based U-Net with attention gate for atypical Meningioma Segmentation, in IEEE Access, 11, pp. 53207–53223.

Hwang, K., Park, J., Kwon, Y., Cho, S. J., Choi, B. S., Kim, J., Kim, E., Jang, J., Ahn, K., Kim, S., & Kim, C. (2022). Fully automated segmentation models of Supratentorial meningiomas assisted by inclusion of normal brain images. Journal of Imaging, 8(12), 327.

Article  PubMed  PubMed Central  Google Scholar 

Jun, Y., Park, Y. W., Shin, H., Shin, Y., Lee, J. R., Han, K., Ahn, S. S., Lim, S. M., Hwang, D., & Lee, S. K. (2023). Intelligent noninvasive meningioma grading with a fully automatic segmentation using interpretable multiparametric deep learning. European Radiology, 33(9), 6124–6133.

Article  PubMed 

留言 (0)

沒有登入
gif