Alam, M., Truong, D. Q., Khadka, N., & Bikson, M. (2016). Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Physics in Medicine & Biology, 61(12), 4506.
Alexander, M. L., et al. (2019). Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Translational Psychiatry, 9(1), 106.
Article PubMed PubMed Central Google Scholar
Antal, A., & Herrmann, C. S. (2016). Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plasticity, 2016. https://doi.org/10.1155/2016/3616807
Camacho-Conde, J. A., del Rosario Gonzalez-Bermudez, M., Carretero-Rey, M., & Khan, Z. U. (2023). Therapeutic potential of brain stimulation techniques in the treatment of mental, psychiatric, and cognitive disorders. CNS Neuroscience & Therapeutics, 29(1), 8–23. https://doi.org/10.1111/cns.13971
Cao, J., & Grover, P. (2019). Stimulus: Noninvasive dynamic patterns of neurostimulation using spatio-temporal interference. IEEE Transactions on Biomedical Engineering, 67(3), 726–737.
Carnevale, N. T., & Hines, M. L. (2006). The NEURON book. Cambridge University Press.
Dong, L., Li, H., Dang, H., Zhang, X., Yue, S., & Zhang, H. (2023). Corrigendum: Efficacy of non-invasive brain stimulation for disorders of consciousness: A systematic review and meta-analysis. Frontiers in Neuroscience, 17. https://doi.org/10.3389/fnins.2023.1293703
Grossman, N., et al. (2017). Noninvasive deep brain stimulation via temporally interfering electric fields. Cell, 169(6), 1029–1041.
Article CAS PubMed PubMed Central Google Scholar
Hodgkin, A. L., & Huxley, A. F. (1990). A quantitative description of membrane current and its application to conduction and excitation in nerve. Bulletin of Mathematical Biology, 52, 25–71.
Article CAS PubMed Google Scholar
Huang, Y., Datta, A., Bikson, M., & Parra, L. C. (2018). ROAST: an open-source, fully-automated, realistic volumetric-approach-based simulator for TES. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3072–3075). IEEE.
Huang, Y., et al. (2017). Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. eLife, 6, e18834.
Article PubMed PubMed Central Google Scholar
Huang, Y., Parra, L. C., & Haufe, S. (2016). The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting. NeuroImage, 140, 150–162.
Hunold, A., Haueisen, J., Nees, F., & Moliadze, V. (2023). Review of individualized current flow modeling studies for transcranial electrical stimulation. Journal of Neuroscience Research, 101(4), 405–423. https://doi.org/10.1002/jnr.25154
Article CAS PubMed Google Scholar
Hutcheon, B., & Yarom, Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in Neurosciences, 23(5), 216–222.
Article CAS PubMed Google Scholar
Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage, 34(4), 1600–1611.
Kaliukhovich, D. A., & Op de Beeck, H. (2018). Hierarchical stimulus processing in rodent primary and lateral visual cortex as assessed through neuronal selectivity and repetition suppression. Journal of Neurophysiology, 120(3), 926–941. https://doi.org/10.1152/jn.00673.2017
Article PubMed PubMed Central Google Scholar
Kim, J., Kim, H., Jeong, H., Roh, D., & Kim, D. H. (2021). tACS as a promising therapeutic option for improving cognitive function in mild cognitive impairment: A direct comparison between tACS and tDCS. Journal of Psychiatric Research, 141, 248–256. https://doi.org/10.1016/j.jpsychires.2021.07.012
Krause, M. R., Vieira, P. G., Csorba, B. A., Pilly, P. K., & Pack, C. C. (2019). Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proceedings of the National Academy of Sciences, 116(12), 5747–5755.
Liu, X., Qiu, F., Hou, L., & Wang, X. (2022). Review of noninvasive or minimally invasive deep brain stimulation. Frontiers in Behavioral Neuroscience, 15. https://doi.org/10.3389/fnbeh.2021.820017
Otsuki, M., & Terenzio, M. (2023). Mechanisms of axonal degeneration and regeneration of the nervous system. Neuroscience Research, 197, 1–2. https://doi.org/10.1016/j.neures.2023.10.003
Article CAS PubMed Google Scholar
Pierce, P. A. (2013). Fatigue: Neural and muscular mechanisms (Vol. 384). Springer Science & Business Media.
Raghavan, M., Fee, D., & Barkhaus, P. E. (2019). Generation and propagation of the action potential. 3–22. https://doi.org/10.1016/B978-0-444-64032-1.00001-1
Reinhart, R. M. G., & Nguyen, J. A. (2019). Working memory revived in older adults by synchronizing rhythmic brain circuits. Nature Neuroscience, 22(5), 820–827.
Article CAS PubMed PubMed Central Google Scholar
Rodríguez-Huguet, M., Ayala-Martínez, C., Vinolo-Gil, M. J., Góngora-Rodríguez, P., Martín-Valero, R., & Góngora-Rodríguez, J. (2024). Transcranial direct current stimulation in physical therapy treatment for adults after stroke: A systematic review. NeuroRehabilitation, 54(2), 171–183. https://doi.org/10.3233/NRE-230213
Sahu, S., Chauhan, M., Sajib, S. Z. K., & Sadleir, R. J. (2021). Influence of Transcranial Electrical Stimulation (TES) waveforms on neural excitability of a realistic axon: a simulation study. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 6725–6727). IEEE. https://doi.org/10.1109/EMBC46164.2021.9629948
Singh, I. (1964). The basis of excitation and action potential in muscle and nerve. Archives Internationales de Physiologie et de Biochimie, 72(3), 378–392. https://doi.org/10.3109/13813456409065347
Article CAS PubMed Google Scholar
Van Hoornweder, S., Meesen, R., & Caulfield, K. A. (2022). On the importance of using both T1-weighted and T2-weighted structural magnetic resonance imaging scans to model electric fields induced by non-invasive brain stimulation in SimNIBS. Brain Stimulation, 15(3), 641–644. https://doi.org/10.1016/j.brs.2022.04.010
Villamar, M. F., Volz, M. S., Bikson, M., Datta, A., DaSilva, A. F., & Fregni, F. (2013). Technique and considerations in the use of 4x1 ring high-definition transcranial direct current stimulation (HD-tDCS). JoVE (Journal of Visualized Experiments), (77), e50309. https://doi.org/10.3791/50309
Vöröslakos, M., et al. (2018). Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nature Communications, 9(1), 483.
Article PubMed PubMed Central Google Scholar
Vosskuhl, J., Strüber, D., & Herrmann, C. S. (2018). Non-invasive brain stimulation: A paradigm shift in understanding brain oscillations. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00211
Wang, S.-M.S., et al. (2021). Designing and pilot testing a novel high-definition transcranial burst electrostimulation device for neurorehabilitation. Journal of Neural Engineering, 18(5), 056030.
Xiao-Dong, L., & Xiao-Hui, W. (2021). Progress in regulation of accurate positioning brain stimulation on motor function. Progress in Biochemistry and Biophysics, 48(6), 659–666.
留言 (0)