The Interplay Between Accumulation of Amyloid-Beta and Tau Proteins, PANoptosis, and Inflammation in Alzheimer’s Disease

Alquezar, C., Arya, S., & Kao, A. W. (2020). Tau post-translational modifications: Dynamic transformers of tau function, degradation, and aggregation. Frontiers in Neurology, 11, 595532.

Article  PubMed  Google Scholar 

Ameen, T. B., Kashif, S. N., Abbas, S. M. I., Babar, K., Ali, S. M. S., & Raheem, A. (2024). Unraveling Alzheimer’s: The promise of aducanumab, lecanemab, and donanemab. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 60(1), 72.

Article  Google Scholar 

Arndt, J. W., Qian, F., Smith, B. A., Quan, C., Kilambi, K. P., Bush, M. W., Walz, T., Pepinsky, R. B., Bussière, T., Hamann, S., Cameron, T. O., & Weinreb, P. H. (2018). Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Science and Reports, 8(1), 6412.

Article  Google Scholar 

Ashton, N. J., Janelidze, S., Mattsson-Carlgren, N., Binette, A. P., Strandberg, O., Brum, W. S., Karikari, T. K., González-Ortiz, F., Di Molfetta, G., Meda, F. J., Jonaitis, E. M., Koscik, R. L., Cody, K., Betthauser, T. J., Li, Y., Vanmechelen, E., Palmqvist, S., Stomrud, E., Bateman, R. J., …, Hansson, O. (2022). Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and disease monitoring. Nature Medicine, 28(12), 2555–2562.

Atagi, Y., Liu, C.-C., Painter, M. M., Chen, X.-F., Verbeeck, C., Zheng, H., Li, X., Rademakers, R., Kang, S. S., Xu, H., Younkin, S., Das, P., Fryer, J. D., & Bu, G. (2015). Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). Journal of Biological Chemistry, 290(43), 26043–26050.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bae, H., Jang, Y., Karki, R., & Han, J.-H. (2024). Implications of inflammatory cell death-PANoptosis in health and disease. Archives of Pharmacal Research, 47(7), 617–631.

Article  CAS  PubMed  Google Scholar 

Balusu, S., & De Strooper, B. (2024). The necroptosis cell death pathway drives neurodegeneration in Alzheimer’s disease. Acta Neuropathologica, 147(1), 96.

Article  PubMed  PubMed Central  Google Scholar 

Barbier, P., Zejneli, O., Martinho, M., Lasorsa, A., Belle, V., Smet-Nocca, C., Tsvetkov, P. O., Devred, F., & Landrieu, I. (2019). Role of tau as a microtubule-associated protein: Structural and functional aspects. Frontiers in Aging Neuroscience, 11, 204.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertheloot, D., Latz, E., & Franklin, B. S. (2021). Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cellular & Molecular Immunology, 18(5), 1106–1121.

Article  CAS  Google Scholar 

Bettcher, B. M., Tansey, M. G., Dorothée, G., & Heneka, M. T. (2021). Peripheral and central immune system crosstalk in Alzheimer disease—A research prospectus. Nature Reviews Neurology, 17(11), 689–701.

Article  PubMed  PubMed Central  Google Scholar 

Bloom, G. S. (2014). Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology, 71(4), 505–508.

Article  PubMed  Google Scholar 

Botella Lucena, P., & Heneka, M. T. (2024). Inflammatory aspects of Alzheimer’s disease. Acta Neuropathologica, 148(1), 31.

Article  PubMed  Google Scholar 

Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259.

Article  CAS  PubMed  Google Scholar 

Braak, H., Thal, D. R., Ghebremedhin, E., & Del Tredici, K. (2011). Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. Journal of Neuropathology and Experimental Neurology, 70(11), 960–969.

Article  CAS  PubMed  Google Scholar 

Caccamo, A., Branca, C., Piras, I. S., Ferreira, E., Huentelman, M. J., Liang, W. S., Readhead, B., Dudley, J. T., Spangenberg, E. E., Green, K. N., Belfiore, R., Winslow, W., & Oddo, S. (2017). Necroptosis activation in Alzheimer’s disease. Nature Neuroscience, 20(9), 1236–1246.

Article  CAS  PubMed  Google Scholar 

Cai, Z. (2014). Monoamine oxidase inhibitors: Promising therapeutic agents for Alzheimer’s disease (Review). Molecular Medicine Reports, 9(5), 1530–1541.

Article  Google Scholar 

Calvo-Rodriguez, M., Kharitonova, E. K., Snyder, A. C., Hou, S. S., Sanchez-Mico, M. V., Das, S., Fan, Z., Shirani, H., Nilsson, K. P. R., Serrano-Pozo, A., & Bacskai, B. J. (2024). Real-time imaging of mitochondrial redox reveals increased mitochondrial oxidative stress associated with amyloid β aggregates in vivo in a mouse model of Alzheimer’s disease. Molecular Neurodegeneration, 19(1), 6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casas-Tinto, S., Zhang, Y., Sanchez-Garcia, J., Gomez-Velazquez, M., Rincon-Limas, D. E., & Fernandez-Funez, P. (2011). The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. Human Molecular Genetics, 20(11), 2144–2160.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cattaneo, A., Cattane, N., Galluzzi, S., Provasi, S., Lopizzo, N., Festari, C., Ferrari, C., Guerra, U. P., Paghera, B., Muscio, C., Bianchetti, A., Volta, G. D., Turla, M., Cotelli, M. S., Gennuso, M., Prelle, A., Zanetti, O., Lussignoli, G., Mirabile, D., …, Frisoni, G. B. (2017). Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging, 49, 60–68.

Cha, M.-Y., Han, S.-H., Son, S. M., Hong, H.-S., Choi, Y.-J., Byun, J., & Mook-Jung, I. (2012). Mitochondria-specific accumulation of amyloid β induces mitochondrial dysfunction leading to apoptotic cell death. PLoS ONE, 7(4), e34929.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chavoshinezhad, S., Beirami, E., Izadpanah, E., Feligioni, M., & Hassanzadeh, K. (2023). Molecular mechanism and potential therapeutic targets of necroptosis and ferroptosis in Alzheimer’s disease. Biomedicine & Pharmacotherapy, 168, 115656.

Article  CAS  Google Scholar 

Chen, S., Peng, J., Sherchan, P., Ma, Y., Xiang, S., Yan, F., Zhao, H., Jiang, Y., Wang, N., Zhang, J. H., & Zhang, H. (2020). TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. Journal of Neuroinflammation, 17(1), 168.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Y., & Yu, Y. (2023). Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. Journal of Neuroinflammation, 20(1), 165.

Article  PubMed  PubMed Central  Google Scholar 

Choi, E.-H., Kim, M.-H., & Park, S.-J. (2024). Targeting mitochondrial dysfunction and reactive oxygen species for neurodegenerative disease treatment. International Journal of Molecular Sciences, 25(14), 7952.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi, S.-B., Kwon, S., Kim, J.-H., Ahn, N.-H., Lee, J.-H., & Yang, S.-H. (2023). The molecular mechanisms of neuroinflammation in Alzheimer’s disease, the consequence of neural cell death. International Journal of Molecular Sciences, 24(14), 11757.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choudhury, S. M., Sarkar, R., Karki, R., & Kanneganti, T.-D. (2024). A comparative study of apoptosis, pyroptosis, necroptosis, and PANoptosis components in mouse and human cells. PLoS ONE, 19(2), e0299577.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clayton, K., Delpech, J. C., Herron, S., Iwahara, N., Ericsson, M., Saito, T., Saido, T. C., Ikezu, S., & Ikezu, T. (2021). Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Molecular Neurodegeneration, 16(1), 18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cotman, C. W., Poon, W. W., Rissman, R. A., & Blurton-Jones, M. (2005). The role of caspase cleavage of tau in Alzheimer disease neuropathology. Journal of Neuropathology and Experimental Neurology, 64(2), 104–112.

Article  CAS  PubMed  Google Scholar 

Cowan, C. M., Bossing, T., Page, A., Shepherd, D., & Mudher, A. (2010). Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo. Acta Neuropathologica, 120(5), 593–604.

Article  CAS  PubMed  Google Scholar 

d’Errico, P., & Meyer-Luehmann, M. (2020). Mechanisms of pathogenic tau and Aβ protein spreading in Alzheimer’s disease. Frontiers in Aging Neuroscience, 12, 265.

Article  PubMed  PubMed Central  Google Scholar 

Dai, Z., Liu, W.-C., Chen, X.-Y., Wang, X., Li, J.-L., & Zhang, X. (2023). Gasdermin D-mediated pyroptosis: Mechanisms, diseases, and inhibitors. Frontiers in Immunology, 14, 1178662.

Article  CAS  PubMed  PubMed Central  Google S

留言 (0)

沒有登入
gif