Alquezar, C., Arya, S., & Kao, A. W. (2020). Tau post-translational modifications: Dynamic transformers of tau function, degradation, and aggregation. Frontiers in Neurology, 11, 595532.
Ameen, T. B., Kashif, S. N., Abbas, S. M. I., Babar, K., Ali, S. M. S., & Raheem, A. (2024). Unraveling Alzheimer’s: The promise of aducanumab, lecanemab, and donanemab. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 60(1), 72.
Arndt, J. W., Qian, F., Smith, B. A., Quan, C., Kilambi, K. P., Bush, M. W., Walz, T., Pepinsky, R. B., Bussière, T., Hamann, S., Cameron, T. O., & Weinreb, P. H. (2018). Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Science and Reports, 8(1), 6412.
Ashton, N. J., Janelidze, S., Mattsson-Carlgren, N., Binette, A. P., Strandberg, O., Brum, W. S., Karikari, T. K., González-Ortiz, F., Di Molfetta, G., Meda, F. J., Jonaitis, E. M., Koscik, R. L., Cody, K., Betthauser, T. J., Li, Y., Vanmechelen, E., Palmqvist, S., Stomrud, E., Bateman, R. J., …, Hansson, O. (2022). Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and disease monitoring. Nature Medicine, 28(12), 2555–2562.
Atagi, Y., Liu, C.-C., Painter, M. M., Chen, X.-F., Verbeeck, C., Zheng, H., Li, X., Rademakers, R., Kang, S. S., Xu, H., Younkin, S., Das, P., Fryer, J. D., & Bu, G. (2015). Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). Journal of Biological Chemistry, 290(43), 26043–26050.
Article CAS PubMed PubMed Central Google Scholar
Bae, H., Jang, Y., Karki, R., & Han, J.-H. (2024). Implications of inflammatory cell death-PANoptosis in health and disease. Archives of Pharmacal Research, 47(7), 617–631.
Article CAS PubMed Google Scholar
Balusu, S., & De Strooper, B. (2024). The necroptosis cell death pathway drives neurodegeneration in Alzheimer’s disease. Acta Neuropathologica, 147(1), 96.
Article PubMed PubMed Central Google Scholar
Barbier, P., Zejneli, O., Martinho, M., Lasorsa, A., Belle, V., Smet-Nocca, C., Tsvetkov, P. O., Devred, F., & Landrieu, I. (2019). Role of tau as a microtubule-associated protein: Structural and functional aspects. Frontiers in Aging Neuroscience, 11, 204.
Article CAS PubMed PubMed Central Google Scholar
Bertheloot, D., Latz, E., & Franklin, B. S. (2021). Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cellular & Molecular Immunology, 18(5), 1106–1121.
Bettcher, B. M., Tansey, M. G., Dorothée, G., & Heneka, M. T. (2021). Peripheral and central immune system crosstalk in Alzheimer disease—A research prospectus. Nature Reviews Neurology, 17(11), 689–701.
Article PubMed PubMed Central Google Scholar
Bloom, G. S. (2014). Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology, 71(4), 505–508.
Botella Lucena, P., & Heneka, M. T. (2024). Inflammatory aspects of Alzheimer’s disease. Acta Neuropathologica, 148(1), 31.
Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259.
Article CAS PubMed Google Scholar
Braak, H., Thal, D. R., Ghebremedhin, E., & Del Tredici, K. (2011). Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. Journal of Neuropathology and Experimental Neurology, 70(11), 960–969.
Article CAS PubMed Google Scholar
Caccamo, A., Branca, C., Piras, I. S., Ferreira, E., Huentelman, M. J., Liang, W. S., Readhead, B., Dudley, J. T., Spangenberg, E. E., Green, K. N., Belfiore, R., Winslow, W., & Oddo, S. (2017). Necroptosis activation in Alzheimer’s disease. Nature Neuroscience, 20(9), 1236–1246.
Article CAS PubMed Google Scholar
Cai, Z. (2014). Monoamine oxidase inhibitors: Promising therapeutic agents for Alzheimer’s disease (Review). Molecular Medicine Reports, 9(5), 1530–1541.
Calvo-Rodriguez, M., Kharitonova, E. K., Snyder, A. C., Hou, S. S., Sanchez-Mico, M. V., Das, S., Fan, Z., Shirani, H., Nilsson, K. P. R., Serrano-Pozo, A., & Bacskai, B. J. (2024). Real-time imaging of mitochondrial redox reveals increased mitochondrial oxidative stress associated with amyloid β aggregates in vivo in a mouse model of Alzheimer’s disease. Molecular Neurodegeneration, 19(1), 6.
Article CAS PubMed PubMed Central Google Scholar
Casas-Tinto, S., Zhang, Y., Sanchez-Garcia, J., Gomez-Velazquez, M., Rincon-Limas, D. E., & Fernandez-Funez, P. (2011). The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. Human Molecular Genetics, 20(11), 2144–2160.
Article CAS PubMed PubMed Central Google Scholar
Cattaneo, A., Cattane, N., Galluzzi, S., Provasi, S., Lopizzo, N., Festari, C., Ferrari, C., Guerra, U. P., Paghera, B., Muscio, C., Bianchetti, A., Volta, G. D., Turla, M., Cotelli, M. S., Gennuso, M., Prelle, A., Zanetti, O., Lussignoli, G., Mirabile, D., …, Frisoni, G. B. (2017). Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging, 49, 60–68.
Cha, M.-Y., Han, S.-H., Son, S. M., Hong, H.-S., Choi, Y.-J., Byun, J., & Mook-Jung, I. (2012). Mitochondria-specific accumulation of amyloid β induces mitochondrial dysfunction leading to apoptotic cell death. PLoS ONE, 7(4), e34929.
Article CAS PubMed PubMed Central Google Scholar
Chavoshinezhad, S., Beirami, E., Izadpanah, E., Feligioni, M., & Hassanzadeh, K. (2023). Molecular mechanism and potential therapeutic targets of necroptosis and ferroptosis in Alzheimer’s disease. Biomedicine & Pharmacotherapy, 168, 115656.
Chen, S., Peng, J., Sherchan, P., Ma, Y., Xiang, S., Yan, F., Zhao, H., Jiang, Y., Wang, N., Zhang, J. H., & Zhang, H. (2020). TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. Journal of Neuroinflammation, 17(1), 168.
Article CAS PubMed PubMed Central Google Scholar
Chen, Y., & Yu, Y. (2023). Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. Journal of Neuroinflammation, 20(1), 165.
Article PubMed PubMed Central Google Scholar
Choi, E.-H., Kim, M.-H., & Park, S.-J. (2024). Targeting mitochondrial dysfunction and reactive oxygen species for neurodegenerative disease treatment. International Journal of Molecular Sciences, 25(14), 7952.
Article CAS PubMed PubMed Central Google Scholar
Choi, S.-B., Kwon, S., Kim, J.-H., Ahn, N.-H., Lee, J.-H., & Yang, S.-H. (2023). The molecular mechanisms of neuroinflammation in Alzheimer’s disease, the consequence of neural cell death. International Journal of Molecular Sciences, 24(14), 11757.
Article CAS PubMed PubMed Central Google Scholar
Choudhury, S. M., Sarkar, R., Karki, R., & Kanneganti, T.-D. (2024). A comparative study of apoptosis, pyroptosis, necroptosis, and PANoptosis components in mouse and human cells. PLoS ONE, 19(2), e0299577.
Article CAS PubMed PubMed Central Google Scholar
Clayton, K., Delpech, J. C., Herron, S., Iwahara, N., Ericsson, M., Saito, T., Saido, T. C., Ikezu, S., & Ikezu, T. (2021). Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Molecular Neurodegeneration, 16(1), 18.
Article CAS PubMed PubMed Central Google Scholar
Cotman, C. W., Poon, W. W., Rissman, R. A., & Blurton-Jones, M. (2005). The role of caspase cleavage of tau in Alzheimer disease neuropathology. Journal of Neuropathology and Experimental Neurology, 64(2), 104–112.
Article CAS PubMed Google Scholar
Cowan, C. M., Bossing, T., Page, A., Shepherd, D., & Mudher, A. (2010). Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo. Acta Neuropathologica, 120(5), 593–604.
Article CAS PubMed Google Scholar
d’Errico, P., & Meyer-Luehmann, M. (2020). Mechanisms of pathogenic tau and Aβ protein spreading in Alzheimer’s disease. Frontiers in Aging Neuroscience, 12, 265.
Article PubMed PubMed Central Google Scholar
Dai, Z., Liu, W.-C., Chen, X.-Y., Wang, X., Li, J.-L., & Zhang, X. (2023). Gasdermin D-mediated pyroptosis: Mechanisms, diseases, and inhibitors. Frontiers in Immunology, 14, 1178662.
留言 (0)