Recent Advances in the miRNA-Mediated Regulation of Neuronal Differentiation and Death

Adlakha, Y. K., & Seth, P. (2017). The expanding horizon of MicroRNAs in cellular reprogramming. Progress in Neurobiology, 148, 21–39.

Article  CAS  PubMed  Google Scholar 

Aizer, A., Kalo, A., Kafri, P., Shraga, A., Ben-Yishay, R., Jacob, A., & Shav-Tal, Y. (2014). Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage. Journal of Cell Science, 127(20), 4443–4456.

CAS  PubMed  Google Scholar 

Ali, A., Ahmed Sheikh, I., Mirza, Z., Hua Gan, S., Amjad Kamal, M., Abuzenadah, M., & A., … & Md. Ashraf, G. (2015). Application of proteomic tools in modern nanotechnological approaches towards effective management of neurodegenerative disorders. Current Drug Metabolism, 16(5), 376–388.

Article  CAS  PubMed  Google Scholar 

Alkhazaali-Ali, Z., Sahab-Negah, S., Boroumand, A. R., & Tavakol-Afshari, J. (2024). MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomedicine & Pharmacotherapy, 177, 116899.

Article  CAS  Google Scholar 

Anderson, P., & Kedersha, N. (2006). RNA granules. The Journal of Cell Biology, 172(6), 803–808.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aschrafi, A., Schwechter, A. D., Mameza, M. G., Natera-Naranjo, O., Gioio, A. E., & Kaplan, B. B. (2008). MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. Journal of Neuroscience, 28(47), 12581–12590.

Article  CAS  PubMed  Google Scholar 

Ban, J. J., Chung, J. Y., Lee, M., Im, W., & Kim, M. (2017). MicroRNA-27a reduces mutant hutingtin aggregation in an in vitro model of Huntington’s disease. Biochemical and Biophysical Research Communications, 488(2), 316–321.

Article  CAS  PubMed  Google Scholar 

Baudet, M. L., Zivraj, K. H., Abreu-Goodger, C., Muldal, A., Armisen, J., Blenkiron, C., & Holt, C. E. (2012). miR-124 acts through CoREST to control onset of Sema3A sensitivity in navigating retinal growth cones. Nature Neuroscience, 15(1), 29–38.

Article  CAS  Google Scholar 

Beclin, C., Follert, P., Stappers, E., Barral, S., Coré, N., De Chevigny, A., & Cremer, H. (2016). miR-200 family controls late steps of postnatal forebrain neurogenesis via Zeb2 inhibition. Scientific Reports, 6(1), 35729.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhatnagar, D., Ladhe, S., & Kumar, D. (2023). Discerning the prospects of miRNAs as a multi-target therapeutic and diagnostic for Alzheimer’s disease. Molecular Neurobiology, 60(10), 5954–5974.

Article  CAS  PubMed  Google Scholar 

Bhinge, A., Namboori, S. C., Bithell, A., Soldati, C., Buckley, N. J., & Stanton, L. W. (2016). MiR-375 is essential for human spinal motor neuron development and may be involved in motor neuron degeneration. Stem Cells, 34(1), 124–134.

Article  CAS  PubMed  Google Scholar 

Bridge, K. S., Shah, K. M., Li, Y., Foxler, D. E., Wong, S. C., Miller, D. C., & Sharp, T. V. (2017). Argonaute utilization for miRNA silencing is determined by phosphorylation-dependent recruitment of LIM-domain-containing proteins. Cell Reports, 20(1), 173–187.

Article  CAS  PubMed  Google Scholar 

Bronevetsky, Y., Villarino, A. V., Eisley, C. J., Barbeau, R., Barczak, A. J., Heinz, G. A., & Ansel, K. M. (2013). T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. Journal of Experimental Medicine, 210(2), 417–432.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bukeirat, M., Sarkar, S. N., Hu, H., Quintana, D. D., Simpkins, J. W., & Ren, X. (2016). MiR-34a regulates blood–brain barrier permeability and mitochondrial function by targeting cytochrome c. Journal of Cerebral Blood Flow & Metabolism, 36(2), 387–392.

Article  CAS  Google Scholar 

Chandran, R., Mehta, S. L., & Vemuganti, R. (2017). Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochemistry International, 111, 12–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, B. Y., Lin, J. J., Lu, M. K., Tan, H. P., Jang, F. L., & Lin, S. H. (2021). Neurodevelopment regulators miR-137 and miR-34 family as biomarkers for early and adult onset schizophrenia. NPJ Schizophrenia, 7(1), 35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, D., Hu, S., Wu, Z., Liu, J., & Li, S. (2018). The role of MiR-132 in regulating neural stem cell proliferation, differentiation and neuronal maturation. Cellular Physiology and Biochemistry, 47(6), 2319–2330.

Article  CAS  PubMed  Google Scholar 

Chen, X., Yang, H., Zhou, X., Zhang, L., & Lu, X. (2016). MiR-93 targeting EphA4 promotes neurite outgrowth from spinal cord neurons. Journal of Molecular Neuroscience, 58, 517–524.

Article  CAS  PubMed  Google Scholar 

Chi, B., Deng, L., Zhi, Z., Wei, Y., Lv, L., Yang, W., & Pang, L. (2022). Upregulation of miRNA-26a enhances the apoptosis of cerebral neurons by targeting EphA2 and inhibiting the MAPK pathway. Developmental Neuroscience, 44(6), 615–628.

Article  CAS  PubMed  Google Scholar 

Choy, F. C., Klarić, T. S., Koblar, S. A., & Lewis, M. D. (2017). miR-744 and miR-224 downregulate Npas4 and affect lineage differentiation potential and neurite development during neural differentiation of mouse embryonic stem cells. Molecular Neurobiology, 54, 3528–3541.

Article  CAS  PubMed  Google Scholar 

Cougot, N., Bhattacharyya, S. N., Tapia-Arancibia, L., Bordonné, R., Filipowicz, W., Bertrand, E., & Rage, F. (2008). Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. Journal of Neuroscience, 28(51), 13793–13804.

Article  CAS  PubMed  Google Scholar 

Das, E., & Bhattacharyya, N. P. (2014). MicroRNA-432 contributes to dopamine cocktail and retinoic acid induced differentiation of human neuroblastoma cells by targeting NESTIN and RCOR1 genes. FEBS Letters, 588(9), 1706–1714.

Article  CAS  PubMed  Google Scholar 

Deng, Y., Zhu, G., Luo, H., & Zhao, S. (2016). MicroRNA-203 as a stemness inhibitor of glioblastoma stem cells. Molecules and Cells, 39(8), 619–624.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding, H., Huang, Z., Chen, M., Wang, C., Chen, X., Chen, J., & Zhang, J. (2016). Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism & Related Disorders, 22, 68–73.

Article  Google Scholar 

Dong, L. G., Lu, F. F., Zu, J., Zhang, W., Xu, C. Y., Jin, G. L., & Cui, G. Y. (2020). MiR-133b inhibits MPP+-induced apoptosis in Parkinson’s disease model by inhibiting the ERK1/2 signaling pathway. European Review for Medical & Pharmacological Sciences, 24(21), 11192–11198.

Google Scholar 

Doxakis, E. (2010). Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153. Journal of Biological Chemistry, 285(17), 12726–12734.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dumont, S., Le Pennec, S., Donnart, A., Teusan, R., Steenman, M., Chevalier, C., & Savagner, F. (2018). Transcriptional orchestration of mitochondrial homeostasis in a cellular model of PGC-1-related coactivator-dependent thyroid tumor. Oncotarget, 9(22), 15883.

Article  PubMed  PubMed Central  Google Scholar 

Dutta, S., Sklerov, M., Teunissen, C. E., & Bitan, G. (2023). Trends in biomarkers for neurodegenerative diseases: Current research and future perspectives. Frontiers in Aging Neuroscience, 15, 1153932.

Article  PubMed  PubMed Central  Google Scholar 

Ebada, M. A., Mostafa, A., Gadallah, A. H. A., Alkanj, S., Alghamdi, B. S., Ashraf, G. M., & Salama, M. (2023). Potential regulation of miRNA-29 and miRNA-9 by estrogens in neurodegenerative disorders: An insightful perspective. Brain Sciences, 13(2), 243.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elangovan, A., Venkatesan, D., Selvaraj, P., Pasha, M. Y., Babu, H. W. S., Iyer, M., & Vellingiri, B. (2023). miRNA in Parkinson’s disease: From pathogenesis to theranostic approaches. Journal of Cellular Physiology, 238(2), 329–354.

Article  CAS 

留言 (0)

沒有登入
gif