Barnum, C. J., & Tansey, M. G. (2010). Modeling neuroinflammatory pathogenesis of Parkinson’s disease. Progress in Brain Research, 184, 113–132. https://doi.org/10.1016/S0079-6123(10)84006-3
Article CAS PubMed Google Scholar
Bautista, D. M., Jordt, S.-E., Nikai, T., Tsuruda, P. R., Read, A. J., Poblete, J., et al. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and Proalgesic agents. Cell, 124(6), 1269–1282. https://doi.org/10.1016/j.cell.2006.02.023
Article CAS PubMed Google Scholar
Beier, E. E., Neal, M., Alam, G., Edler, M., Wu, L.-J., & Richardson, J. R. (2017). Alternative microglial activation is associated with cessation of progressive dopamine neuron loss in mice systemically administered lipopolysaccharide. Neurobiology of Disease, 108, 115–127. https://doi.org/10.1016/j.nbd.2017.08.009
Article CAS PubMed PubMed Central Google Scholar
Bohman, L.-E., Riley, J., Milovanova, T. N., Sanborn, M. R., Thom, S. R., & Armstead, W. M. (2016). Microparticles Impair Hypotensive Cerebrovasodilation and Cause Hippocampal Neuronal Cell Injury after Traumatic Brain Injury. Journal of Neurotrauma, 33(2), 168–174. https://doi.org/10.1089/neu.2015.3885
Article PubMed PubMed Central Google Scholar
Boonen, B., Alpizar, Y. A., Sanchez, A., López-Requena, A., Voets, T., & Talavera, K. (2018). Differential effects of lipopolysaccharide on mouse sensory TRP channels. Cell Calcium, 73, 72–81. https://doi.org/10.1016/j.ceca.2018.04.004
Article CAS PubMed Google Scholar
Chiechio, S. (2016). Modulation of chronic pain by metabotropic glutamate receptors. Advances in Pharmacology, 75, 63–89. https://doi.org/10.1016/bs.apha.2015.11.001
Article CAS PubMed Google Scholar
Deuis, J. R., Dvorakova, L. S., & Vetter, I. (2017). Methods used to evaluate pain behaviors in rodents. Frontiers in Molecular Neuroscience, 10, 284. https://doi.org/10.3389/fnmol.2017.00284
Article PubMed PubMed Central Google Scholar
Duitama, M., Vargas-López, V., Casas, Z., Albarracin, S. L., Sutachan, J.-J., & Torres, Y. P. (2020). TRP channels role in pain associated with neurodegenerative diseases. Frontiers in Neuroscience, 14, 782. https://doi.org/10.3389/fnins.2020.00782
Article PubMed PubMed Central Google Scholar
Dutta, G., Zhang, P., & Liu, B. (2008). The lipopolysaccharide Parkinson’s disease animal model: Mechanistic studies and drug discovery. Fundamental & Clinical Pharmacology, 22(5), 453–464. https://doi.org/10.1111/j.1472-8206.2008.00616.x
Ferrari, C. C., Pott Godoy, M. C., Tarelli, R., Chertoff, M., Depino, A. M., & Pitossi, F. J. (2006). Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1β in the substantia nigra. Neurobiology of Disease, 24(1), 183–193. https://doi.org/10.1016/j.nbd.2006.06.013
Article CAS PubMed Google Scholar
Finnerup, N. B., Kuner, R., & Jensen, T. S. (2021). Neuropathic pain: from mechanisms to treatment. Physiological Reviews, 101(1), 259–301. https://doi.org/10.1152/physrev.00045.2019
Article CAS PubMed Google Scholar
Fitzgerald, W., Freeman, M. L., Lederman, M. M., Vasilieva, E., Romero, R., & Margolis, L. (2018). A system of cytokines encapsulated in ExtraCellular vesicles. Scientific Reports, 8(1), 8973. https://doi.org/10.1038/s41598-018-27190-x
Article CAS PubMed PubMed Central Google Scholar
Freyermuth-Trujillo, X., Segura-Uribe, J. J., Salgado-Ceballos, H., Orozco-Barrios, C. E., & Coyoy-Salgado, A. (2022). Inflammation: A target for treatment in spinal cord injury. Cells, 11(17), 2692. https://doi.org/10.3390/cells11172692
Article CAS PubMed PubMed Central Google Scholar
Ghosh, D., Singh, A., Kumar, A., & Sinha, N. (2022). High mobility group box 1 (HMGB1) inhibition attenuates lipopolysaccharide-induced cognitive dysfunction and sickness-like behavior in mice. Immunologic Research, 70(5), 633–643. https://doi.org/10.1007/s12026-022-09295-8
Article CAS PubMed Google Scholar
Hallal, S., Tűzesi, Á., Grau, G. E., Buckland, M. E., & Alexander, K. L. (2022). Understanding the extracellular vesicle surface for clinical molecular biology. Journal of Extracellular Vesicles, 11(10), e12260. https://doi.org/10.1002/jev2.12260
Article CAS PubMed PubMed Central Google Scholar
Han, P., & Ivanovski, S. (2019). Effect of saliva collection methods on the detection of periodontium-related genetic and epigenetic biomarkers—a pilot study. International Journal of Molecular Sciences, 20(19), 4729. https://doi.org/10.3390/ijms20194729
Article CAS PubMed PubMed Central Google Scholar
Haraguchi, K., Kawamoto, A., Isami, K., Maeda, S., Kusano, A., Asakura, K., et al. (2012). TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. The Journal of Neuroscience, 32(11), 3931–3941. https://doi.org/10.1523/JNEUROSCI.4703-11.2012
Article CAS PubMed PubMed Central Google Scholar
Hu, Y., Sun, Y., Wan, C., Dai, X., Wu, S., Lo, P.-C., et al. (2022). Microparticles: Biogenesis, characteristics and intervention therapy for cancers in preclinical and clinical research. Journal of Nanobiotechnology, 20(1), 189. https://doi.org/10.1186/s12951-022-01358-0
Article CAS PubMed PubMed Central Google Scholar
Ibáñez, F., Ureña-Peralta, J. R., Costa-Alba, P., Torres, J.-L., Laso, F.-J., Marcos, M., et al. (2020). Circulating MicroRNAs in extracellular vesicles as potential biomarkers of alcohol-induced neuroinflammation in adolescence: gender differences. International Journal of Molecular Sciences, 21(18), 6730. https://doi.org/10.3390/ijms21186730
Article CAS PubMed PubMed Central Google Scholar
Jean-Toussaint, R., Tian, Y., Chaudhuri, A. D., Haughey, N. J., Sacan, A., & Ajit, S. K. (2020). Proteome characterization of small extracellular vesicles from spared nerve injury model of neuropathic pain. Journal of Proteomics, 211, 103540. https://doi.org/10.1016/j.jprot.2019.103540
Article CAS PubMed Google Scholar
Kocot-Kępska, M., Zajączkowska, R., Mika, J., Wordliczek, J., Dobrogowski, J., & Przeklasa-Muszyńska, A. (2021). Peripheral mechanisms of neuropathic pain—the role of neuronal and non-neuronal interactions and their implications for topical treatment of neuropathic pain. Pharmaceuticals, 14, 77.
Article PubMed PubMed Central Google Scholar
Kohno, K., Shirasaka, R., Yoshihara, K., Mikuriya, S., Tanaka, K., Takanami, K., et al. (2022). A spinal microglia population involved in remitting and relapsing neuropathic pain. Science, 376(6588), 86–90. https://doi.org/10.1126/science.abf6805
Article CAS PubMed Google Scholar
Kumar, A., Stoica, B. A., Loane, D. J., Yang, M., Abulwerdi, G., Khan, N., et al. (2017). Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. Journal of Neuroinflammation, 14(1), 47. https://doi.org/10.1186/s12974-017-0819-4
Article CAS PubMed PubMed Central Google Scholar
Kumar, S., Singh, A. K., & Vinayak, M. (2019). ML171, a specific inhibitor of NOX1 attenuates formalin induced nociceptive sensitization by inhibition of ROS mediated ERK1/2 signaling. Neurochemistry International, 129, 104466. https://doi.org/10.1016/j.neuint.2019.104466
Article CAS PubMed Google Scholar
Mazzitelli, M., Presto, P., Antenucci, N., Meltan, S., & Neugebauer, V. (2022). Recent advances in the modulation of pain by the metabotropic glutamate receptors. Cells, 11(16), 2608. https://doi.org/10.3390/cells11162608
Article CAS PubMed PubMed Central Google Scholar
Meseguer, V., Alpizar, Y. A., Luis, E., Tajada, S., Denlinger, B., Fajardo, O., et al. (2014). TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nature Communications, 5(1), 3125. https://doi.org/10.1038/ncomms4125
留言 (0)