Advancing understanding of human variability through toxicokinetic modeling, in vitro-in vivo extrapolation, and new approach methodologies

Li Y, Meng Q, Yang M, Liu D, Hou X, Tang L, et al. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B. 2019;9:1113–44. https://doi.org/10.1016/j.apsb.2019.10.001.

Article  PubMed  PubMed Central  Google Scholar 

Bell SM, Chang X, Wambaugh JF, Allen DG, Bartels M, Brouwer KLR, et al. In vitro to in vivo extrapolation for high throughput prioritization and decision making. Toxicol Vitro. 2018;47:213–27. https://doi.org/10.1016/j.tiv.2017.11.016.

Article  CAS  Google Scholar 

Bois FY, Jamei M, Clewell HJ. PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals. Toxicology. 2010;278:256–67. https://doi.org/10.1016/j.tox.2010.06.007.

Article  CAS  PubMed  Google Scholar 

Chiu WA, Barton HA, DeWoskin RS, Schlosser P, Thompson CM, Sonawane B, et al. Evaluation of physiologically based pharmacokinetic models for use in risk assessment. J Appl Toxicol. 2007;27:218–37. https://doi.org/10.1002/jat.1225.

Article  CAS  PubMed  Google Scholar 

Dorne JL, Renwick AG. The refinement of uncertainty/safety factors in risk assessment by the incorporation of data on toxicokinetic variability in humans. Toxicol Sci. 2005;86:20–6. https://doi.org/10.1093/toxsci/kfi160.

Article  CAS  PubMed  Google Scholar 

Andersen ME. Toxicokinetic modeling and its applications in chemical risk assessment. Toxicol Lett. 2003;138:9–27. https://doi.org/10.1016/s0378-4274(02)00375-2.

Article  CAS  PubMed  Google Scholar 

Lipscomb JC, Poet TS. In vitro measurements of metabolism for application in pharmacokinetic modeling. Pharmacol Ther. 2008;118:82–103. https://doi.org/10.1016/j.pharmthera.2008.01.006.

Article  CAS  PubMed  Google Scholar 

Clewell HJ, Andersen ME. Use of physiologically based pharmacokinetic modeling to investigate individual versus population risk. Toxicology. 1996;111:315–29. https://doi.org/10.1016/0300-483X(96)03385-9.

Article  CAS  PubMed  Google Scholar 

Ginsberg G, Vulimiri SV, Lin YS, Kancherla J, Foos B, Sonawane B. A framework and case studies for evaluation of enzyme ontogeny in children’s health risk evaluation. J Toxicol Environ Health A. 2017;80:569–93. https://doi.org/10.1080/15287394.2017.1369915.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tracy TS, Chaudhry AS, Prasad B, Thummel KE, Schuetz EG, Zhong XB, et al. Interindividual variability in cytochrome P450-mediated drug metabolism. Drug Metab Dispos. 2016;44:343–51. https://doi.org/10.1124/dmd.115.067900.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdo N, Xia M, Brown CC, Kosyk O, Huang R, Sakamuru S, et al. Population-based in vitro hazard and concentration-response assessment of chemicals: the 1000 genomes high-throughput screening study. Environ Health Perspect. 2015;123:458–66. https://doi.org/10.1289/ehp.1408775.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ginsberg G, Smolenski S, Neafsey P, Hattis D, Walker K, Guyton KZ, et al. The influence of genetic polymorphisms on population variability in six xenobiotic-metabolizing enzymes. J Toxicol Environ Health B Crit Rev. 2009;12:307–33. https://doi.org/10.1080/10937400903158318.

Article  CAS  PubMed  Google Scholar 

Hines RN. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. 2007;21:169–75. https://doi.org/10.1002/jbt.20179.

Article  CAS  PubMed  Google Scholar 

Song G, Sun X, Hines RN, McCarver DG, Lake BG, Osimitz TG, et al. Determination of human hepatic CYP2C8 and CYP1A2 age-dependent expression to support human health risk assessment for early ages. Drug Metab Dispos. 2017;45:468–75. https://doi.org/10.1124/dmd.116.074583.

Article  CAS  PubMed  Google Scholar 

Seripa D, Panza F, Daragjati J, Paroni G, Pilotto A. Measuring pharmacogenetics in special groups: geriatrics. Expert Opin Drug Metab Toxicol. 2015;11:1073–88. https://doi.org/10.1517/17425255.2015.1041919.

Article  CAS  PubMed  Google Scholar 

Kiss M, Mbasu R, Nicolaï J, Barnouin K, Kotian A, Mooij MG, et al. Ontogeny of small intestinal drug transporters and metabolizing enzymes based on targeted quantitative proteomics. Drug Metab Dispos. 2021;49:1038–46. https://doi.org/10.1124/dmd.121.000559.

Article  CAS  PubMed  Google Scholar 

van Groen BD, Allegaert K, Tibboel D, de Wildt SN. Innovative approaches and recent advances in the study of ontogeny of drug metabolism and transport. Br J Clin Pharmacol. 2022;88:4285–96. https://doi.org/10.1111/bcp.14534.

Article  PubMed  Google Scholar 

Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm. 2008;363:1–25. https://doi.org/10.1016/j.ijpharm.2008.07.009.

Article  CAS  PubMed  Google Scholar 

Clarke G, Sandhu KV, Griffin BT, Dinan TG, Cryan JF, Hyland NP. Gut reactions: breaking down xenobiotic-microbiome interactions. Pharmacol Rev. 2019;71:198–224. https://doi.org/10.1124/pr.118.015768.

Article  CAS  PubMed  Google Scholar 

EFSA Scientific Committee, Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, et al. Guidance on the risk assessment of substances present in food intended for infants below 16 weeks of age. EFSA J. 2017;15:e04849. https://doi.org/10.2903/j.efsa.2017.4849.

Article  PubMed Central  Google Scholar 

Loiodice S, da Nogueira Costa A, Atienzar F. Current trends in in silico, in vitro toxicology, and safety biomarkers in early drug development. Drug Chem Toxicol. 2019;42:113–21. https://doi.org/10.1080/01480545.2017.1400044.

Article  CAS  PubMed  Google Scholar 

Kavlock RJ, Bahadori T, Barton-Maclaren TS, Gwinn MR, Rasenberg M, Thomas RS. Accelerating the pace of chemical risk assessment. Chem Res Toxicol. 2018;31:287–90. https://doi.org/10.1021/acs.chemrestox.7b00339.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thomas RS, Bahadori T, Buckley TJ, Cowden J, Deisenroth C, Dionisio KL, et al. The next generation blueprint of computational toxicology at the U.S. environmental protection agency. Toxicol Sci. 2019;169:317–32. https://doi.org/10.1093/toxsci/kfz058.

Article  CAS  PubMed  Google Scholar 

Faber CM. Through the looking glass: in vitro models for inhalation toxicology and interindividual variability in the airway. Appl in Vitro Toxicol. 2018;4:115–28. https://doi.org/10.1089/aivt.2018.0002.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, Zhang N, Niu Z. Health risk assessment of trihalomethanes mixtures from daily water-related activities via multi-pathway exposure based on PBPK model. Ecotoxicol Environ Saf. 2018;163:427–35. https://doi.org/10.1016/j.ecoenv.2018.07.073.

Article  CAS  PubMed  Google Scholar 

Dobreniecki S, Mendez E, Lowit A, Freudenrich TM, Wallace K, Carpenter A, et al. Integration of toxicodynamic and toxicokinetic new approach methods into a weight-of-evidence analysis for pesticide developmental neurotoxicity assessment: a case-study with DL- and L-glufosinate. Regul Toxicol Pharmacol. 2022;131: 105167. https://doi.org/10.1016/j.yrtph.2022.105167.

Article  CAS  PubMed  Google Scholar 

Health Canada. Science approach document–bioactivity exposure ratio: application in priority setting and risk assessment n.d.

Chang X, Tan Y-M, Allen DG, Bell S, Brown PC, Browning L, et al. IVIVE: facilitating the use of in vitro toxicity data in risk assessment and decision making. Toxics. 2022;10:232. https://doi.org/10.3390/toxics10050232.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif