Passeri E, Elkhoury K, Morsink M, Broersen K, Linder M, Tamayol A, et al. Alzheimer’s disease: treatment strategies and their limitations. Int J Mol Sci. 2022;23(22):13954. https://doi.org/10.3390/ijms232213954.
Article CAS PubMed PubMed Central Google Scholar
Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet. 2020;396(10248):413–46. https://doi.org/10.1016/S0140-6736(20)30367-6.
Article PubMed PubMed Central Google Scholar
Sabbagh MN, Lue LF, Fayard D, Shi J. Increasing precision of clinical diagnosis of Alzheimer’s disease using a combined algorithm incorporating clinical and novel biomarker data. Neurol Ther. 2017;6(Suppl 1):83–95. https://doi.org/10.1007/s40120-017-0069-5.
Article PubMed PubMed Central Google Scholar
Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71(5):362–81. https://doi.org/10.1097/NEN.0b013e31825018f7.
Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, Nixon RA, Jones DT. Alzheimer disease. Nat Rev Dis Primers. 2021;7(1):33. https://doi.org/10.1038/s41572-021-00269-y.
Article PubMed PubMed Central Google Scholar
Thal DR, Rüb U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791–800. https://doi.org/10.1212/wnl.58.12.1791.
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59. https://doi.org/10.1007/BF00308809.
Article CAS PubMed Google Scholar
Lawrence E, Vegvari C, Ower A, Hadjichrysanthou C, De Wolf F, Anderson RM. A systematic review of longitudinal studies which measure Alzheimer’s disease biomarkers. J Alzheimers Dis. 2017;59(4):1359–79. https://doi.org/10.3233/JAD-170261.
Article CAS PubMed PubMed Central Google Scholar
Hampel H, Shen Y, Walsh DM, Aisen P, Shaw LM, Zetterberg H, et al. Biological markers of amyloid beta-related mechanisms in Alzheimer’s disease. Exp Neurol. 2010;223(2):334–46. https://doi.org/10.1016/j.expneurol.2009.09.024.
Article CAS PubMed Google Scholar
Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: methodological and physiological considerations for PET studies. Clin Transl Imaging. 2013. https://doi.org/10.1007/s40336-013-0026-y.
Article PubMed PubMed Central Google Scholar
Rózga M, Bittner T, Batrla R, Karl J. Preanalytical sample handling recommendations for Alzheimer’s disease plasma biomarkers. Alzheimers Dement. 2019;11:291–300. https://doi.org/10.1016/j.dadm.2019.02.002.
Snyder HM, Carrillo MC, Grodstein F, Henriksen K, Jeromin A, Lovestone S, et al. Developing novel blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement’. 2014;10(1):109–14. https://doi.org/10.1016/j.jalz.2013.10.007.
Thijssen EH, La Joie R, Wolf A, Strom A, Wang P, Iaccarino L, et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med. 2020;26(3):387–97. https://doi.org/10.1038/s41591-020-0762-2.
Article CAS PubMed PubMed Central Google Scholar
Mattsson N, Insel PS, Donohue M, Landau S, Jagust WJ, Shaw LM, et al. Independent information from cerebrospinal fluid amyloid-β and florbetapir imaging in Alzheimer’s disease. Brain. 2015;138(Pt 3):772–83. https://doi.org/10.1093/brain/awu367.
Simonsen AH, Herukka SK, Andreasen N, Baldeiras I, Bjerke M, Blennow K, et al. Recommendations for CSF AD biomarkers in the diagnostic evaluation of dementia. Alzheimers Dement. 2017;13(3):274–84. https://doi.org/10.1016/j.jalz.2016.09.008.
Khan TK. Peripheral fluid-based biomarkers of Alzheimer’s disease. In: Khan T, editor. Biomarkers in Alzheimer’s disease. Amsterdam: Elsevier Science; 2016. p. 183–218.
Anastasia P, Nesterova EAK, Zharkova M, Sozin S, Sobolev V, Ivanikova NV, Shkrob M, Yuryev A. Diseases of the nervous system. In: Nesterova AP, editor. An atlas of human disease signaling pathways. Amsterdam: Elsevier Science; 2020. p. 219–58.
Shah NS, Vidal JS, Masaki K, Petrovitch H, Ross GW, Tilley C, et al. Midlife blood pressure, plasma β-amyloid, and the risk for Alzheimer disease: the Honolulu Asia aging study. Hypertension. 2012;59(4):780–6. https://doi.org/10.1161/HYPERTENSIONAHA.111.178962.
Article CAS PubMed Google Scholar
Schindler SE, Bollinger JG, Ovod V, Mawuenyega KG, Li Y, Gordon BA, et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019;93(17):e1647–59. https://doi.org/10.1212/WNL.0000000000008081.
Article CAS PubMed PubMed Central Google Scholar
Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature. 2018;554(7691):249–54. https://doi.org/10.1038/nature25456.
Article CAS PubMed Google Scholar
Ovod V, Ramsey KN, Mawuenyega KG, Bollinger JG, Hicks T, Schneider T, et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement. 2017;13(8):841–9. https://doi.org/10.1016/j.jalz.2017.06.2266.
West T, Kirmess KM, Meyer MR, Holubasch MS, Knapik SS, Hu Y, et al. A blood-based diagnostic test incorporating plasma Aβ42/40 ratio, ApoE proteotype, and age accurately identifies brain amyloid status: findings from a multi cohort validity analysis. Mol Neurodegener. 2021;16(1):30. https://doi.org/10.1186/s13024-021-00451-6.
Article CAS PubMed PubMed Central Google Scholar
Katabathula S, Wang Q, Xu R. Predict Alzheimer’s disease using hippocampus MRI data: a lightweight 3D deep convolutional network model with visual and global shape representations. Alzheimers Res Ther. 2021;13(1):104. https://doi.org/10.1186/s13195-021-00837-0.
Article PubMed PubMed Central Google Scholar
Chincarini A, Sensi F, Rei L, Gemme G, Squarcia S, Longo R, et al. Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer’s disease. Neuroimage. 2016;125:834–47. https://doi.org/10.1016/j.neuroimage.2015.10.065.
Epifanio I, Ventura-Campos N. Hippocampal shape analysis in Alzheimer’s disease using functional data analysis. Stat Med. 2014;33(5):867–80. https://doi.org/10.1002/sim.5968.
Cunha LP, Almeida AL, Costa-Cunha LV, Costa CF, Monteiro ML. The role of optical coherence tomography in Alzheimer’s disease. Int J Retina Vitreous. 2016;2:24. https://doi.org/10.1186/s40942-016-0049-4.
Article PubMed PubMed Central Google Scholar
Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, et al. Brain and retinal pericytes: origin, function and role. Front Cell Neurosci. 2016;10:20. https://doi.org/10.3389/fncel.2016.00020.
Article CAS PubMed PubMed Central Google Scholar
Crair MC, Mason CA. Reconnecting eye to brain. J Neurosci. 2016;36(42):10707–22. https://doi.org/10.1523/JNEUROSCI.1711-16.2016.
Article CAS PubMed PubMed Central Google Scholar
Poroy C, Yücel AÂ. Optical coherence tomography: is really a new biomarker for Alzheimer’s disease? Ann Indian Acad Neurol. 2018;21(2):119–25. https://doi.org/10.4103/aian.AIAN_368_17.
留言 (0)