An eye’s look unmasks the mystery: correlation between serum amyloid beta peptide, hippocampal volume and retinal thickness in Alzheimer`s disease

Passeri E, Elkhoury K, Morsink M, Broersen K, Linder M, Tamayol A, et al. Alzheimer’s disease: treatment strategies and their limitations. Int J Mol Sci. 2022;23(22):13954. https://doi.org/10.3390/ijms232213954.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet. 2020;396(10248):413–46. https://doi.org/10.1016/S0140-6736(20)30367-6.

Article  PubMed  PubMed Central  Google Scholar 

Sabbagh MN, Lue LF, Fayard D, Shi J. Increasing precision of clinical diagnosis of Alzheimer’s disease using a combined algorithm incorporating clinical and novel biomarker data. Neurol Ther. 2017;6(Suppl 1):83–95. https://doi.org/10.1007/s40120-017-0069-5.

Article  PubMed  PubMed Central  Google Scholar 

Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71(5):362–81. https://doi.org/10.1097/NEN.0b013e31825018f7.

Article  PubMed  Google Scholar 

Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, Nixon RA, Jones DT. Alzheimer disease. Nat Rev Dis Primers. 2021;7(1):33. https://doi.org/10.1038/s41572-021-00269-y.

Article  PubMed  PubMed Central  Google Scholar 

Thal DR, Rüb U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791–800. https://doi.org/10.1212/wnl.58.12.1791.

Article  PubMed  Google Scholar 

Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59. https://doi.org/10.1007/BF00308809.

Article  CAS  PubMed  Google Scholar 

Lawrence E, Vegvari C, Ower A, Hadjichrysanthou C, De Wolf F, Anderson RM. A systematic review of longitudinal studies which measure Alzheimer’s disease biomarkers. J Alzheimers Dis. 2017;59(4):1359–79. https://doi.org/10.3233/JAD-170261.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hampel H, Shen Y, Walsh DM, Aisen P, Shaw LM, Zetterberg H, et al. Biological markers of amyloid beta-related mechanisms in Alzheimer’s disease. Exp Neurol. 2010;223(2):334–46. https://doi.org/10.1016/j.expneurol.2009.09.024.

Article  CAS  PubMed  Google Scholar 

Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: methodological and physiological considerations for PET studies. Clin Transl Imaging. 2013. https://doi.org/10.1007/s40336-013-0026-y.

Article  PubMed  PubMed Central  Google Scholar 

Rózga M, Bittner T, Batrla R, Karl J. Preanalytical sample handling recommendations for Alzheimer’s disease plasma biomarkers. Alzheimers Dement. 2019;11:291–300. https://doi.org/10.1016/j.dadm.2019.02.002.

Article  Google Scholar 

Snyder HM, Carrillo MC, Grodstein F, Henriksen K, Jeromin A, Lovestone S, et al. Developing novel blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement’. 2014;10(1):109–14. https://doi.org/10.1016/j.jalz.2013.10.007.

Article  PubMed  Google Scholar 

Thijssen EH, La Joie R, Wolf A, Strom A, Wang P, Iaccarino L, et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med. 2020;26(3):387–97. https://doi.org/10.1038/s41591-020-0762-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mattsson N, Insel PS, Donohue M, Landau S, Jagust WJ, Shaw LM, et al. Independent information from cerebrospinal fluid amyloid-β and florbetapir imaging in Alzheimer’s disease. Brain. 2015;138(Pt 3):772–83. https://doi.org/10.1093/brain/awu367.

Article  PubMed  Google Scholar 

Simonsen AH, Herukka SK, Andreasen N, Baldeiras I, Bjerke M, Blennow K, et al. Recommendations for CSF AD biomarkers in the diagnostic evaluation of dementia. Alzheimers Dement. 2017;13(3):274–84. https://doi.org/10.1016/j.jalz.2016.09.008.

Article  PubMed  Google Scholar 

Khan TK. Peripheral fluid-based biomarkers of Alzheimer’s disease. In: Khan T, editor. Biomarkers in Alzheimer’s disease. Amsterdam: Elsevier Science; 2016. p. 183–218.

Chapter  Google Scholar 

Anastasia P, Nesterova EAK, Zharkova M, Sozin S, Sobolev V, Ivanikova NV, Shkrob M, Yuryev A. Diseases of the nervous system. In: Nesterova AP, editor. An atlas of human disease signaling pathways. Amsterdam: Elsevier Science; 2020. p. 219–58.

Google Scholar 

Shah NS, Vidal JS, Masaki K, Petrovitch H, Ross GW, Tilley C, et al. Midlife blood pressure, plasma β-amyloid, and the risk for Alzheimer disease: the Honolulu Asia aging study. Hypertension. 2012;59(4):780–6. https://doi.org/10.1161/HYPERTENSIONAHA.111.178962.

Article  CAS  PubMed  Google Scholar 

Schindler SE, Bollinger JG, Ovod V, Mawuenyega KG, Li Y, Gordon BA, et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019;93(17):e1647–59. https://doi.org/10.1212/WNL.0000000000008081.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature. 2018;554(7691):249–54. https://doi.org/10.1038/nature25456.

Article  CAS  PubMed  Google Scholar 

Ovod V, Ramsey KN, Mawuenyega KG, Bollinger JG, Hicks T, Schneider T, et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement. 2017;13(8):841–9. https://doi.org/10.1016/j.jalz.2017.06.2266.

Article  PubMed  Google Scholar 

West T, Kirmess KM, Meyer MR, Holubasch MS, Knapik SS, Hu Y, et al. A blood-based diagnostic test incorporating plasma Aβ42/40 ratio, ApoE proteotype, and age accurately identifies brain amyloid status: findings from a multi cohort validity analysis. Mol Neurodegener. 2021;16(1):30. https://doi.org/10.1186/s13024-021-00451-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Katabathula S, Wang Q, Xu R. Predict Alzheimer’s disease using hippocampus MRI data: a lightweight 3D deep convolutional network model with visual and global shape representations. Alzheimers Res Ther. 2021;13(1):104. https://doi.org/10.1186/s13195-021-00837-0.

Article  PubMed  PubMed Central  Google Scholar 

Chincarini A, Sensi F, Rei L, Gemme G, Squarcia S, Longo R, et al. Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer’s disease. Neuroimage. 2016;125:834–47. https://doi.org/10.1016/j.neuroimage.2015.10.065.

Article  PubMed  Google Scholar 

Epifanio I, Ventura-Campos N. Hippocampal shape analysis in Alzheimer’s disease using functional data analysis. Stat Med. 2014;33(5):867–80. https://doi.org/10.1002/sim.5968.

Article  PubMed  Google Scholar 

Cunha LP, Almeida AL, Costa-Cunha LV, Costa CF, Monteiro ML. The role of optical coherence tomography in Alzheimer’s disease. Int J Retina Vitreous. 2016;2:24. https://doi.org/10.1186/s40942-016-0049-4.

Article  PubMed  PubMed Central  Google Scholar 

Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, et al. Brain and retinal pericytes: origin, function and role. Front Cell Neurosci. 2016;10:20. https://doi.org/10.3389/fncel.2016.00020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crair MC, Mason CA. Reconnecting eye to brain. J Neurosci. 2016;36(42):10707–22. https://doi.org/10.1523/JNEUROSCI.1711-16.2016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poroy C, Yücel AÂ. Optical coherence tomography: is really a new biomarker for Alzheimer’s disease? Ann Indian Acad Neurol. 2018;21(2):119–25. https://doi.org/10.4103/aian.AIAN_368_17.

留言 (0)

沒有登入
gif