Elliott MD, Rasouly HM, Gharavi AG. Genetics of kidney disease: the unexpected role of Rare disorders. Annu Rev Med. 2023;74:353–67.
Article CAS PubMed Google Scholar
Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ. Acute kidney injury. Nat Reviews Disease Primers. 2021;7(1):52.
Oerum S, Meynier V, Catala M, Tisné C. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res. 2021;49(13):7239–55.
Article CAS PubMed PubMed Central Google Scholar
Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20(10):608–24.
Article CAS PubMed Google Scholar
Zhang T, Zhang SW, Zhang SY, Gao SJ, Chen Y, Huang Y. m6A-express: uncovering complex and condition-specific m6A regulation of gene expression. Nucleic Acids Res. 2021;49(20):e116.
Article CAS PubMed PubMed Central Google Scholar
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, et al. N6-methyladenosine (m6A) methylation in kidney diseases: mechanisms and therapeutic potential. Biochim et Biophys acta Gene Regul Mech. 2023;1866(4):194967.
You L, Han Z, Chen H, Chen L, Lin Y, Wang B, et al. The role of N6-methyladenosine (m(6)A) in kidney diseases. Front Med. 2023;10:1247690.
Qi S, Song J, Chen L, Weng H. The role of N-methyladenosine modification in acute and chronic kidney diseases. Mol Med (Cambridge Mass). 2023;29(1):166.
Menon S, Symons JM, Selewski DT. Acute kidney Injury. Pediatr Rev. 2023;44(5):265–79.
Wang JN, Wang F, Ke J, Li Z, Xu CH, Yang Q, et al. Inhibition of METTL3 attenuates renal injury and inflammation by alleviating table 3 m6A modifications via IGF2BP2-dependent mechanisms. Sci Transl Med. 2022;14(640):eabk2709.
Article CAS PubMed Google Scholar
Moroz-Omori EV, Huang D, Kumar Bedi R, Cheriyamkunnel SJ, Bochenkova E, Dolbois A, et al. METTL3 inhibitors for Epitranscriptomic Modulation of Cellular processes. ChemMedChem. 2021;16(19):3035–43.
Article CAS PubMed PubMed Central Google Scholar
Wang Q, Fan X, Sheng Q, Yang M, Zhou P, Lu S, et al. N6-methyladenosine methylation in kidney injury. Clin Epigenetics. 2023;15(1):170.
Article PubMed PubMed Central Google Scholar
Song B, Zeng Y, Cao Y, Zhang J, Xu C, Pan Y, et al. Emerging role of METTL3 in inflammatory diseases: mechanisms and therapeutic applications. Front Immunol. 2023;14:1221609.
Article CAS PubMed PubMed Central Google Scholar
Murakami S, Jaffrey SR. Hidden codes in mRNA: control of gene expression by m(6)a. Mol Cell. 2022;82(12):2236–51.
Article CAS PubMed PubMed Central Google Scholar
Fisher AJ, Beal PA. Structural basis for eukaryotic mRNA modification. Curr Opin Struct Biol. 2018;53:59–68.
Article CAS PubMed Google Scholar
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18(5):1106–21.
Article CAS PubMed PubMed Central Google Scholar
Meng F, Liu Y, Chen Q, Ma Q, Gu S, Cui R, et al. METTL3 contributes to renal ischemia-reperfusion injury by regulating Foxd1 methylation. Am J Physiol Ren Physiol. 2020;319(5):F839–47.
Tokuyama T, Yanagi S. Role of mitochondrial dynamics in Heart diseases. Genes (Basel). 2023;14(10).
Hu C, Zhang B, Zhao S. METTL3-mediated N6-methyladenosine modification stimulates mitochondrial damage and ferroptosis of kidney tubular epithelial cells following acute kidney injury by modulating the stabilization of MDM2-p53-LMNB1 axis. Eur J Med Chem. 2023;259:115677.
Article CAS PubMed Google Scholar
Li J, Jia YC, Ding YX, Bai J, Cao F, Li F. The crosstalk between ferroptosis and mitochondrial dynamic regulatory networks. Int J Biol Sci. 2023;19(9):2756–71.
Article CAS PubMed PubMed Central Google Scholar
Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–52.
Article CAS PubMed PubMed Central Google Scholar
Pan J, Xie Y, Li H, Li X, Chen J, Liu X, et al. mmu-lncRNA 121686/hsa-lncRNA 520657 induced by METTL3 drive the progression of AKI by targeting miR-328-5p/HtrA3 signaling axis. Mol Therapy: J Am Soc Gene Therapy. 2022;30(12):3694–713.
Romani AMP. Cisplatin in cancer treatment. Biochem Pharmacol. 2022;206:115323.
Article CAS PubMed Google Scholar
Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994–1007.
Article CAS PubMed Google Scholar
Li CM, Li M, Zhao WB, Ye ZC, Peng H. Alteration of N6-Methyladenosine RNA profiles in Cisplatin-Induced Acute kidney Injury in mice. Front Mol Biosci. 2021;8:654465.
Article CAS PubMed PubMed Central Google Scholar
Volovat S, Apetrii M, Stefan A, Vlad C, Voroneanu L, Hogas M, et al. Cisplatin and AKI: an ongoing battle with new perspectives-a narrative review. Int Urol Nephrol. 2023;55(5):1205–9.
Article CAS PubMed Google Scholar
Zhou P, Wu M, Ye C, Xu Q, Wang L. Meclofenamic acid promotes cisplatin-induced acute kidney injury by inhibiting fat mass and obesity-associated protein-mediated m(6)a abrogation in RNA. J Biol Chem. 2019;294(45):16908–17.
Article CAS PubMed PubMed Central Google Scholar
Li S, Zhou H, Liang Y, Yang Q, Zhang J, Shen W, et al. Integrated analysis of transcriptome-wide m(6)a methylation in a Cd-induced kidney injury rat model. Ecotoxicol Environ Saf. 2023;256:114903.
Article CAS PubMed Google Scholar
Sun Y, Liu G, Li M, Wang L, He Z, Gu S. Study on the Correlation between Regulatory Proteins of N(6)-methyladenosine and oxidative damage in Cadmium-induced renal Injury. Biol Trace Elem Res. 2023;201(5):2294–302.
Article CAS PubMed Google Scholar
Rhouma M, Madec JY, Laxminarayan R. Colistin: from the shadows to a one health approach for addressing antimicrobial resistance. Int J Antimicrob Agents. 2023;61(2):106713.
Article CAS PubMed Google Scholar
Jafari F, Elyasi S. Prevention of colistin induced nephrotoxicity: a review of preclinical and clinical data. Expert Rev Clin Pharmacol. 2021;14(9):1113–31.
Article CAS PubMed Google Scholar
Kitada M, Xu J, Ogura Y, Monno I, Koya D. Manganese Superoxide dismutase dysfunction and the pathogenesis of kidney disease. Front Physiol. 2020;11:755.
留言 (0)