STAT3 Inhibitor Increases α-Synuclein in PFF-Treated Astroglia Cells by Dysregulating Autophagy and Potentially Affects Exosome Biogenesis

Abjean, L., Ben Haim, L., Riquelme-Perez, M., Gipchtein, P., Derbois, C., Palomares, M.-A., Petit, F., Hérard, A.-S., Gaillard, M.-C., Guillermier, M., Gaudin-Guérif, M., Aurégan, G., Sagar, N., Héry, C., Dufour, N., Robil, N., Kabani, M., Melki, R., De la Grange, P., . . . Escartin, C. (2022). Reactive astrocytes promote proteostasis in Huntington’s disease through the JAK2-STAT3 pathway. Brain, 146(1), 149–166. https://doi.org/10.1093/brain/awac068

Babuta, M., Furi, I., Bala, S., Bukong, T. N., Lowe, P., Catalano, D., Calenda, C., Kodys, K., & Szabo, G. (2019). Dysregulated autophagy and lysosome function are linked to exosome production by micro-RNA 155 in alcoholic liver disease. Hepatology, 70(6), 2123–2141. https://doi.org/10.1002/hep.30766

Article  CAS  PubMed  Google Scholar 

Choi, J. Y., Yun, J., Hwang, C. J., Lee, H. P., Kim, H. D., Chun, H., Park, P. H., Choi, D. Y., Han, S. B., & Hong, J. T. (2019). (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol ameliorates MPTP-induced dopaminergic neurodegeneration by inhibiting the STAT3 pathway. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20112632

Article  PubMed  PubMed Central  Google Scholar 

Eskelinen, E.-L. (2006). Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Molecular Aspects of Medicine, 27(5), 495–502. https://doi.org/10.1016/j.mam.2006.08.005

Article  CAS  PubMed  Google Scholar 

Fan, M., Sun, W., Gu, X., Lu, S., Shen, Q., Liu, X., & Zhang, X. (2022). The critical role of STAT3 in biogenesis of tumor-derived exosomes with potency of inducing cancer cachexia in vitro and in vivo. Oncogene, 41(7), 1050–1062. https://doi.org/10.1038/s41388-021-02151-3

Article  CAS  PubMed  Google Scholar 

Galvin, J. E., Lee, V.M.-Y., & Trojanowski, J. Q. (2001). Synucleinopathies: Clinical and pathological implications. Archives of Neurology, 58(2), 186–190. https://doi.org/10.1001/archneur.58.2.186

Article  CAS  PubMed  Google Scholar 

Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: Cellular and molecular mechanisms. The Journal of Pathology, 221(1), 3–12. https://doi.org/10.1002/path.2697

Article  CAS  PubMed  Google Scholar 

Guo, M., Wang, J., Zhao, Y., Feng, Y., Han, S., Dong, Q., Cui, M., & Tieu, K. (2020). Microglial exosomes facilitate alpha-synuclein transmission in Parkinson’s disease. Brain, 143(5), 1476–1497. https://doi.org/10.1093/brain/awaa090

Article  PubMed  PubMed Central  Google Scholar 

Han, Q. F., Li, W. J., Hu, K. S., Gao, J., Zhai, W. L., Yang, J. H., & Zhang, S. J. (2022). Exosome biogenesis: Machinery, regulation, and therapeutic implications in cancer. Molecular Cancer, 21(1), 207. https://doi.org/10.1186/s12943-022-01671-0

Article  PubMed  PubMed Central  Google Scholar 

Kwon, H. S., & Koh, S. H. (2020). Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl Neurodegener, 9(1), 42. https://doi.org/10.1186/s40035-020-00221-2

Article  PubMed  PubMed Central  Google Scholar 

Li, H., Chen, L., Li, J. J., Zhou, Q., Huang, A., Liu, W. W., Wang, K., Gao, L., Qi, S. T., & Lu, Y. T. (2018). miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. Journal of Hematology & Oncology, 11(1), 70. https://doi.org/10.1186/s13045-018-0618-0

Article  CAS  Google Scholar 

Mauvezin, C., & Neufeld, T. P. (2015). Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy, 11(8), 1437–1438. https://doi.org/10.1080/15548627.2015.1066957

Article  CAS  PubMed  PubMed Central  Google Scholar 

Priego, N., Zhu, L., Monteiro, C., Mulders, M., Wasilewski, D., Bindeman, W., Doglio, L., Martínez, L., Martínez-Saez, E., Ramón y Cajal, S., Megías, D., Hernández-Encinas, E., Blanco-Aparicio, C., Martínez, L., Zarzuela, E., Muñoz, J., Fustero-Torre, C., Piñeiro-Yáñez, E., Hernández-Laín, A., . . . Valiente, M. (2018). STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nature Medicine, 24(7), 1024–1035. https://doi.org/10.1038/s41591-018-0044-4

Reichenbach, N., Delekate, A., Plescher, M., Schmitt, F., Krauss, S., Blank, N., Halle, A., & Petzold, G. C. (2019). Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Molecular Medicine. https://doi.org/10.15252/emmm.201809665

Article  PubMed  PubMed Central  Google Scholar 

Rostami, J., Holmqvist, S., Lindström, V., Sigvardson, J., Westermark, G. T., Ingelsson, M., Bergström, J., Roybon, L., & Erlandsson, A. (2017). Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. The Journal of Neuroscience, 37(49), 11835–11853. https://doi.org/10.1523/jneurosci.0983-17.2017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Volpicelli-Daley, L. A., Luk, K. C., & Lee, V. M. (2014). Addition of exogenous α-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous α-synuclein to Lewy body and Lewy neurite-like aggregates. Nature Protocols, 9(9), 2135–2146. https://doi.org/10.1038/nprot.2014.143

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, K., Wang, M., Wang, H., Zhao, S., Tu, D., Gong, X., Li, W., Liu, X., Zhong, L., Chen, J., & Xie, P. (2024). HMGB1/STAT3/p65 axis drives microglial activation and autophagy exert a crucial role in chronic stress-induced major depressive disorder. Journal of Advanced Research, 59, 79–96. https://doi.org/10.1016/j.jare.2023.06.003

Article  CAS  PubMed  Google Scholar 

You, L., Wang, Z., Li, H., Shou, J., Jing, Z., Xie, J., Sui, X., Pan, H., & Han, W. (2015). The role of STAT3 in autophagy. Autophagy, 11(5), 729–739. https://doi.org/10.1080/15548627.2015.1017192

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif