Abe N, Nishihara T, Yorozuya T, Tanaka J (2020) Microglia and macrophages in the pathological central and peripheral nervous systems. Cells. https://doi.org/10.3390/cells9092132
Article PubMed PubMed Central Google Scholar
Almeida RG, Czopka T, Ffrench-Constant C, Lyons DA (2011) Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development 138(20):4443–4450. https://doi.org/10.1242/dev.071001
Article PubMed PubMed Central CAS Google Scholar
Ataie A, Shadifar M, Ataee R (2016) Polyphenolic antioxidants and neuronal regeneration. Basic Clin Neurosci 7(2):81–90. https://doi.org/10.15412/J.BCN.03070201
Article PubMed PubMed Central CAS Google Scholar
Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M (1997) Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377(4):577–595
Article PubMed CAS Google Scholar
Becker CG, Lieberoth BC, Morellini F, Feldner J, Becker T, Schachner M (2004) L1.1 is involved in spinal cord regeneration in adult zebrafish. J Neurosci 24(36):7837–7842. https://doi.org/10.1523/jneurosci.2420-04.2004
Article PubMed PubMed Central CAS Google Scholar
Bunge RP (1994) The role of the Schwann cell in trophic support and regeneration. J Neurol 242(1):S19-21. https://doi.org/10.1007/BF00939235
Article PubMed CAS Google Scholar
Burris B, Mokalled MH (2024) Spinal cord injury and assays for regeneration. Methods Mol Biol 2707:215–222. https://doi.org/10.1007/978-1-0716-3401-1_1
Article PubMed CAS Google Scholar
Burris B, Jensen N, Mokalled MH (2021) Assessment of swim endurance and swim behavior in adult zebrafish. J vis Exp. https://doi.org/10.3791/63240
Chang W, Pedroni A, Bertuzzi M, Kizil C, Simon A, Ampatzis K (2021) Locomotion dependent neuron-glia interactions control neurogenesis and regeneration in the adult zebrafish spinal cord. Nat Commun 12(1):4857. https://doi.org/10.1038/s41467-021-25052-1
Article PubMed PubMed Central CAS Google Scholar
Chapela D, Sousa S, Martins I, Cristóvão AM, Pinto P, Corte-Real S, Saúde L (2019) A zebrafish drug screening platform boosts the discovery of novel therapeutics for spinal cord injury in mammals. Sci Rep 9(1):10475. https://doi.org/10.1038/s41598-019-47006-w
Article PubMed PubMed Central CAS Google Scholar
Chen ZL, Guo C, Zou YY, Feng C, Yang DX, Sun CC, Wen W, Jian ZJ, Zhao Z, Xiao Q, Zheng L, Peng XY, Zhou ZQ, Tang CF (2023) Aerobic exercise enhances mitochondrial homeostasis to counteract D-galactose-induced sarcopenia in zebrafish. Exp Gerontol 180:112265. https://doi.org/10.1016/j.exger.2023.112265
Article PubMed CAS Google Scholar
Choi TY, Choi TI, Lee YR, Choe SK, Kim CH (2021) Zebrafish as an animal model for biomedical research. Exp Mol Med 53(3):310–317. https://doi.org/10.1038/s12276-021-00571-5
Article PubMed PubMed Central CAS Google Scholar
Cigliola V, Becker CJ, Poss KD (2020) Building bridges, not walls: spinal cord regeneration in zebrafish. Dis Model Mech. https://doi.org/10.1242/dmm.044131
Article PubMed PubMed Central Google Scholar
Cigliola V, Shoffner A, Lee N, Ou J, Gonzalez TJ, Hoque J, Becker CJ, Han Y, Shen G, Faw TD, Abd-El-Barr MM, Varghese S, Asokan A, Poss KD (2023) Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer. Nat Commun 14(1):4857. https://doi.org/10.1038/s41467-023-40486-5
Article PubMed PubMed Central CAS Google Scholar
Council NR (2011) Guide for the care and use of laboratory animals, 8th edn. The National Academies Press, Washington. https://doi.org/10.17226/12910
Doyle LM, Roberts BL (2004) Functional recovery and axonal growth following spinal cord transection is accelerated by sustained L-dopa administration. Eur J Neurosci 20(8):2008–2014. https://doi.org/10.1111/j.1460-9568.2004.03658.x
Article PubMed CAS Google Scholar
EFSA (2005) Opinion of the scientific panel on animal health and welfare (AHAW) on a request from the commission related to the aspects of the biology and welfare of animals used for experimental and other scientific purposes. EFSA J. https://doi.org/10.2903/j.efsa.2005.292
Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC, Neuber J, Balic A, Giladi A, Sheban F, Dutertre CA, Pfeifle C, Peri F, Raffo-Romero A, Vizioli J, Matiasek K, Scheiwe C, Meckel S, Mätz-Rensing K, van der Meer F, Thormodsson FR, Stadelmann C, Zilkha N, Kimchi T, Ginhoux F, Ulitsky I, Erny D, Amit I, Prinz M (2019) Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179(7):1609-1622.e16. https://doi.org/10.1016/j.cell.2019.11.010
Article PubMed CAS Google Scholar
Hasumura T, Meguro S (2016) Exercise quantity-dependent muscle hypertrophy in adult zebrafish (Danio rerio). J Comp Physiol B 186(5):603–614. https://doi.org/10.1007/s00360-016-0977-1
Article PubMed CAS Google Scholar
Heinkele FJ, Lou B, Erben V, Bennewitz K, Poschet G, Sticht C, Kroll J (2021) Metabolic and transcriptional adaptations improve physical performance of zebrafish. Antioxid (Basel). https://doi.org/10.3390/antiox10101581
Higashijima S, Hotta Y, Okamoto H (2000) Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. J Neurosci 20(1):206–218. https://doi.org/10.1523/JNEUROSCI.20-01-00206.2000
Article PubMed PubMed Central CAS Google Scholar
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assuncao JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberlander M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nusslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503. https://doi.org/10.1038/nature12111
Article PubMed PubMed Central CAS Google Scholar
Huang CX, Zhao Y, Mao J, Wang Z, Xu L, Cheng J, Guan NN, Song J (2021) An injury-induced serotonergic neuron subpopulation contributes to axon regrowth and function restoration after spinal cord injury in zebrafish. Nat Commun 12(1):7093. https://doi.org/10.1038/s41467-021-27419-w
Article PubMed PubMed Central CAS Google Scholar
Hui S, Ghosh S (2016) Various modes of spinal cord injury to study regeneration in adult zebrafish. Bio Protoc. https://doi.org/10.21769/BioProtoc.2043
Hui SP, Dutta A, Ghosh S (2010) Cellular response after crush injury in adult zebrafish spinal cord. Dev Dyn 239(11):2962–2979. https://doi.org/10.1002/dvdy.22438
Hui SP, SenGupta D, Lee SGP, Sen T, Kundu S, Mathavan S, Ghosh S (2014) Genome wide expression profiling during spinal cord regeneration identifies comprehensive cellular responses in zebrafish. PLoS ONE 9(1):e84212.
留言 (0)