Unraveling the Nexus: The Role of Collapsin Response Mediator Protein 2 Phosphorylation in Neurodegeneration and Neuroregeneration

Abu Rmaileh, A., Solaimuthu, B., Khatib, A., Lavi, S., Tanna, M., Hayashi, A., Ben Yosef, M., Lichtenstein, M., Pillar, N., & Shaul, Y. D. (2022). DPYSL2 interacts with JAK1 to mediate breast cancer cell migration. Journal of Cell Biology, 221(7), e202106078. https://doi.org/10.1083/jcb.202106078

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernal-Conde, L. D., Ramos-Acevedo, R., Reyes-Hernández, M. A., Balbuena-Olvera, A. J., Morales-Moreno, I. D., Argüero-Sánchez, R., Schüle, B., & Guerra-Crespo, M. (2020). Alpha-synuclein physiology and pathology: A perspective on cellular structures and organelles. Frontiers in Neuroscience, 13, 1399. https://doi.org/10.3389/fnins.2019.01399

Article  PubMed  PubMed Central  Google Scholar 

Bloom, G. S. (2014). Amyloid-β and Tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology, 71(4), 505. https://doi.org/10.1001/jamaneurol.2013.5847

Article  PubMed  Google Scholar 

Brahma, M. M., Takahashi, K., Namekata, K., Harada, T., Goshima, Y., & Ohshima, T. (2022). Genetic inhibition of collapsin response mediator protein-2 phosphorylation ameliorates retinal ganglion cell death in normal-tension glaucoma models. Genes to Cells, 27(8), 526–536. https://doi.org/10.1111/gtc.12971

Article  CAS  PubMed  Google Scholar 

Brittain, J. M., Wang, Y., Eruvwetere, O., & Khanna, R. (2012). Cdk5-mediated phosphorylation of CRMP-2 enhances its interaction with CaV2.2. FEBS Letters, 586(21), 3813–3818. https://doi.org/10.1016/j.febslet.2012.09.022

Article  CAS  PubMed  Google Scholar 

Cheng, L., Chen, K., Li, J., Wu, J., Zhang, J., Chen, L., Guo, G., & Zhang, J. (2022). Phosphorylation of CRMP2 by Cdk5 negatively regulates the surface delivery and synaptic function of AMPA receptors. Molecular Neurobiology, 59(2), 762–777. https://doi.org/10.1007/s12035-021-02581-w

Article  CAS  PubMed  Google Scholar 

Cigliola, V., Becker, C. J., & Poss, K. D. (2020). Building bridges, not walls: Spinal cord regeneration in zebrafish. Disease Models & Mechanisms, 13(5), dmm044131. https://doi.org/10.1242/dmm.044131

Article  CAS  Google Scholar 

Compston, A., & Coles, A. (2008). Multiple sclerosis. The Lancet, 372(9648), 1502–1517. https://doi.org/10.1016/S0140-6736(08)61620-7

Article  CAS  Google Scholar 

De Winter, F., Oudega, M., Lankhorst, A. J., Hamers, F. P., Blits, B., Ruitenberg, M. J., Pasterkamp, R. J., Gispen, W. H., & Verhaagen, J. (2002). Injury-induced Class 3 semaphorin expression in the rat spinal cord. Experimental Neurology, 175(1), 61–75. https://doi.org/10.1006/exnr.2002.7884

Article  CAS  PubMed  Google Scholar 

Ferreira, L. M. R., Floriddia, E. M., Quadrato, G., & Di Giovanni, S. (2012). Neural regeneration: Lessons from regenerating and non-regenerating systems. Molecular Neurobiology, 46(2), 227–241. https://doi.org/10.1007/s12035-012-8290-9

Article  CAS  PubMed  Google Scholar 

Filbin, M. T. (2003). Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nature Reviews Neuroscience, 4(9), 703–713. https://doi.org/10.1038/nrn1195

Article  CAS  PubMed  Google Scholar 

Gu, Y., Hamajima, N., & Ihara, Y. (2000). Neurofibrillary tangle-associated collapsin response mediator protein-2 (CRMP-2) is highly phosphorylated on Thr-509, Ser-518, and Ser-522. Biochemistry, 39(15), 4267–4275. https://doi.org/10.1021/bi992323h

Article  CAS  PubMed  Google Scholar 

Isono, T., Yamashita, N., Obara, M., Araki, T., Nakamura, F., Kamiya, Y., Alkam, T., Nitta, A., Nabeshima, T., Mikoshiba, K., Ohshima, T., & Goshima, Y. (2013). Amyloid-β25–35 induces impairment of cognitive function and long-term potentiation through phosphorylation of collapsin response mediator protein 2. Neuroscience Research, 77(3), 180–185. https://doi.org/10.1016/j.neures.2013.08.005

Article  CAS  PubMed  Google Scholar 

Jiang, Y. P., Wang, S., Lai, W. D., Wu, X. Q., Jin, Y., Xu, Z. H., Moutal, A., Khanna, R., Park, K. D., Shan, Z. M., Wen, C. P., & Yu, J. (2022). Neuronal CRMP2 phosphorylation inhibition by the flavonoid, naringenin, contributes to the reversal of spinal sensitization and arthritic pain improvement. Arthritis Research & Therapy, 24(1), 277. https://doi.org/10.1186/s13075-022-02975-8

Article  CAS  Google Scholar 

Khanna, R., Moutal, A., Perez-Miller, S., Chefdeville, A., Boinon, L., & Patek, M. (2020). Druggability of CRMP2 for neurodegenerative diseases. ACS Chemical Neuroscience, 11(17), 2492–2505. https://doi.org/10.1021/acschemneuro.0c00307

Article  CAS  PubMed  Google Scholar 

Koga, S., Sekiya, H., Kondru, N., Ross, O. A., & Dickson, D. W. (2021). Neuropathology and molecular diagnosis of Synucleinopathies. Molecular Neurodegeneration, 16(1), 83. https://doi.org/10.1186/s13024-021-00501-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kondo, S., Takahashi, K., Kinoshita, Y., Nagai, J., Wakatsuki, S., Araki, T., Goshima, Y., & Ohshima, T. (2019). Genetic inhibition of CRMP2 phosphorylation at serine 522 promotes axonal regeneration after optic nerve injury. Scientific Reports, 9(1), 7188. https://doi.org/10.1038/s41598-019-43658-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kotaka, K., Nagai, J., Hensley, K., & Ohshima, T. (2017). Lanthionine ketimine ester promotes locomotor recovery after spinal cord injury by reducing neuroinflammation and promoting axon growth. Biochemical and Biophysical Research Communications, 483(1), 759–764. https://doi.org/10.1016/j.bbrc.2016.12.069

Article  CAS  PubMed  Google Scholar 

Lawal, M., Olotu, F. A., & Soliman, M. E. S. (2018). Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer’s disease using bioinformatics and computational tools. Computers in Biology and Medicine, 98, 168–177. https://doi.org/10.1016/j.compbiomed.2018.05.012

Article  CAS  PubMed  Google Scholar 

Laywell, E. D., Rakic, P., Kukekov, V. G., Holland, E. C., & Steindler, D. A. (2000). Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proceedings of the National Academy of Sciences, 97(25), 13883–13888. https://doi.org/10.1073/pnas.250471697

Article  CAS  Google Scholar 

Lee, J. Y., Taghian, K., & Petratos, S. (2014). Axonal degeneration in multiple sclerosis: Can we predict and prevent permanent disability? Acta Neuropathologica Communications, 2, 97. https://doi.org/10.1186/s40478-014-0097-7

Article  PubMed  PubMed Central  Google Scholar 

Li, S., Guo, Y., Takahashi, M., Suzuki, H., Kosaki, K., & Ohshima, T. (2024). Forebrain commissure formation in zebrafish embryo requires the binding of KLC1 to CRMP2. Developmental Neurobiology. https://doi.org/10.1002/dneu.22948

Article  PubMed  Google Scholar 

Lin, B., Li, Y., Wang, T., Qiu, Y., Chen, Z., Zhao, K., & Lu, N. (2020). CRMP2 is a therapeutic target that suppresses the aggressiveness of breast cancer cells by stabilizing RECK. Oncogene, 39(37), 6024–6040. https://doi.org/10.1038/s41388-020-01412-x

Article  CAS  PubMed  Google Scholar 

Nagai, J., Baba, R., & Ohshima, T. (2017). CRMPs function in neurons and glial cells: Potential therapeutic targets for neurodegenerative diseases and CNS injury. Molecular Neurobiology, 54(6), 4243–4256. https://doi.org/10.1007/s12035-016-0005-1

Article  CAS  PubMed  Google Scholar 

Nagai, J., Owada, K., Kitamura, Y., Goshima, Y., & Ohshima, T. (2016). Inhibition of CRMP2 phosphorylation repairs CNS by regulating neurotrophic and inhibitory responses. Experimental Neurology, 277, 283–295. https://doi.org/10.1016/j.expneurol.2016.01.015

Article  CAS  PubMed  Google Scholar 

Nakamura, F., Ohshima, T., & Goshima, Y. (2020). Collapsin response mediator proteins: Their biological functions and pathophysiology in neuronal development and regeneration. Frontiers in Cellular Neuroscience, 14, 188. https://doi.org/10.3389/fncel.2020.00188

Article  CAS  PubMed  PubMed Central  Google Scholar 

Numata-Uematsu, Y., Wakatsuki, S., Nagano, S., Shibata, M., Sakai, K., Ichinohe, N., Mikoshiba, K., Ohshima, T., Yamashita, N., Goshima, Y., & Araki, T. (2019). Inhibition of collapsin response mediator protein-2 phosphorylation ameliorates motor phenotype of ALS model mice expressing SOD1G93A. Neuroscience Research, 139, 63–68. https://doi.org/10.1016/j.neures.2018.08.016

Article  CAS  PubMed 

留言 (0)

沒有登入
gif