Abu Rmaileh, A., Solaimuthu, B., Khatib, A., Lavi, S., Tanna, M., Hayashi, A., Ben Yosef, M., Lichtenstein, M., Pillar, N., & Shaul, Y. D. (2022). DPYSL2 interacts with JAK1 to mediate breast cancer cell migration. Journal of Cell Biology, 221(7), e202106078. https://doi.org/10.1083/jcb.202106078
Article CAS PubMed PubMed Central Google Scholar
Bernal-Conde, L. D., Ramos-Acevedo, R., Reyes-Hernández, M. A., Balbuena-Olvera, A. J., Morales-Moreno, I. D., Argüero-Sánchez, R., Schüle, B., & Guerra-Crespo, M. (2020). Alpha-synuclein physiology and pathology: A perspective on cellular structures and organelles. Frontiers in Neuroscience, 13, 1399. https://doi.org/10.3389/fnins.2019.01399
Article PubMed PubMed Central Google Scholar
Bloom, G. S. (2014). Amyloid-β and Tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology, 71(4), 505. https://doi.org/10.1001/jamaneurol.2013.5847
Brahma, M. M., Takahashi, K., Namekata, K., Harada, T., Goshima, Y., & Ohshima, T. (2022). Genetic inhibition of collapsin response mediator protein-2 phosphorylation ameliorates retinal ganglion cell death in normal-tension glaucoma models. Genes to Cells, 27(8), 526–536. https://doi.org/10.1111/gtc.12971
Article CAS PubMed Google Scholar
Brittain, J. M., Wang, Y., Eruvwetere, O., & Khanna, R. (2012). Cdk5-mediated phosphorylation of CRMP-2 enhances its interaction with CaV2.2. FEBS Letters, 586(21), 3813–3818. https://doi.org/10.1016/j.febslet.2012.09.022
Article CAS PubMed Google Scholar
Cheng, L., Chen, K., Li, J., Wu, J., Zhang, J., Chen, L., Guo, G., & Zhang, J. (2022). Phosphorylation of CRMP2 by Cdk5 negatively regulates the surface delivery and synaptic function of AMPA receptors. Molecular Neurobiology, 59(2), 762–777. https://doi.org/10.1007/s12035-021-02581-w
Article CAS PubMed Google Scholar
Cigliola, V., Becker, C. J., & Poss, K. D. (2020). Building bridges, not walls: Spinal cord regeneration in zebrafish. Disease Models & Mechanisms, 13(5), dmm044131. https://doi.org/10.1242/dmm.044131
Compston, A., & Coles, A. (2008). Multiple sclerosis. The Lancet, 372(9648), 1502–1517. https://doi.org/10.1016/S0140-6736(08)61620-7
De Winter, F., Oudega, M., Lankhorst, A. J., Hamers, F. P., Blits, B., Ruitenberg, M. J., Pasterkamp, R. J., Gispen, W. H., & Verhaagen, J. (2002). Injury-induced Class 3 semaphorin expression in the rat spinal cord. Experimental Neurology, 175(1), 61–75. https://doi.org/10.1006/exnr.2002.7884
Article CAS PubMed Google Scholar
Ferreira, L. M. R., Floriddia, E. M., Quadrato, G., & Di Giovanni, S. (2012). Neural regeneration: Lessons from regenerating and non-regenerating systems. Molecular Neurobiology, 46(2), 227–241. https://doi.org/10.1007/s12035-012-8290-9
Article CAS PubMed Google Scholar
Filbin, M. T. (2003). Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nature Reviews Neuroscience, 4(9), 703–713. https://doi.org/10.1038/nrn1195
Article CAS PubMed Google Scholar
Gu, Y., Hamajima, N., & Ihara, Y. (2000). Neurofibrillary tangle-associated collapsin response mediator protein-2 (CRMP-2) is highly phosphorylated on Thr-509, Ser-518, and Ser-522. Biochemistry, 39(15), 4267–4275. https://doi.org/10.1021/bi992323h
Article CAS PubMed Google Scholar
Isono, T., Yamashita, N., Obara, M., Araki, T., Nakamura, F., Kamiya, Y., Alkam, T., Nitta, A., Nabeshima, T., Mikoshiba, K., Ohshima, T., & Goshima, Y. (2013). Amyloid-β25–35 induces impairment of cognitive function and long-term potentiation through phosphorylation of collapsin response mediator protein 2. Neuroscience Research, 77(3), 180–185. https://doi.org/10.1016/j.neures.2013.08.005
Article CAS PubMed Google Scholar
Jiang, Y. P., Wang, S., Lai, W. D., Wu, X. Q., Jin, Y., Xu, Z. H., Moutal, A., Khanna, R., Park, K. D., Shan, Z. M., Wen, C. P., & Yu, J. (2022). Neuronal CRMP2 phosphorylation inhibition by the flavonoid, naringenin, contributes to the reversal of spinal sensitization and arthritic pain improvement. Arthritis Research & Therapy, 24(1), 277. https://doi.org/10.1186/s13075-022-02975-8
Khanna, R., Moutal, A., Perez-Miller, S., Chefdeville, A., Boinon, L., & Patek, M. (2020). Druggability of CRMP2 for neurodegenerative diseases. ACS Chemical Neuroscience, 11(17), 2492–2505. https://doi.org/10.1021/acschemneuro.0c00307
Article CAS PubMed Google Scholar
Koga, S., Sekiya, H., Kondru, N., Ross, O. A., & Dickson, D. W. (2021). Neuropathology and molecular diagnosis of Synucleinopathies. Molecular Neurodegeneration, 16(1), 83. https://doi.org/10.1186/s13024-021-00501-z
Article CAS PubMed PubMed Central Google Scholar
Kondo, S., Takahashi, K., Kinoshita, Y., Nagai, J., Wakatsuki, S., Araki, T., Goshima, Y., & Ohshima, T. (2019). Genetic inhibition of CRMP2 phosphorylation at serine 522 promotes axonal regeneration after optic nerve injury. Scientific Reports, 9(1), 7188. https://doi.org/10.1038/s41598-019-43658-w
Article CAS PubMed PubMed Central Google Scholar
Kotaka, K., Nagai, J., Hensley, K., & Ohshima, T. (2017). Lanthionine ketimine ester promotes locomotor recovery after spinal cord injury by reducing neuroinflammation and promoting axon growth. Biochemical and Biophysical Research Communications, 483(1), 759–764. https://doi.org/10.1016/j.bbrc.2016.12.069
Article CAS PubMed Google Scholar
Lawal, M., Olotu, F. A., & Soliman, M. E. S. (2018). Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer’s disease using bioinformatics and computational tools. Computers in Biology and Medicine, 98, 168–177. https://doi.org/10.1016/j.compbiomed.2018.05.012
Article CAS PubMed Google Scholar
Laywell, E. D., Rakic, P., Kukekov, V. G., Holland, E. C., & Steindler, D. A. (2000). Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proceedings of the National Academy of Sciences, 97(25), 13883–13888. https://doi.org/10.1073/pnas.250471697
Lee, J. Y., Taghian, K., & Petratos, S. (2014). Axonal degeneration in multiple sclerosis: Can we predict and prevent permanent disability? Acta Neuropathologica Communications, 2, 97. https://doi.org/10.1186/s40478-014-0097-7
Article PubMed PubMed Central Google Scholar
Li, S., Guo, Y., Takahashi, M., Suzuki, H., Kosaki, K., & Ohshima, T. (2024). Forebrain commissure formation in zebrafish embryo requires the binding of KLC1 to CRMP2. Developmental Neurobiology. https://doi.org/10.1002/dneu.22948
Lin, B., Li, Y., Wang, T., Qiu, Y., Chen, Z., Zhao, K., & Lu, N. (2020). CRMP2 is a therapeutic target that suppresses the aggressiveness of breast cancer cells by stabilizing RECK. Oncogene, 39(37), 6024–6040. https://doi.org/10.1038/s41388-020-01412-x
Article CAS PubMed Google Scholar
Nagai, J., Baba, R., & Ohshima, T. (2017). CRMPs function in neurons and glial cells: Potential therapeutic targets for neurodegenerative diseases and CNS injury. Molecular Neurobiology, 54(6), 4243–4256. https://doi.org/10.1007/s12035-016-0005-1
Article CAS PubMed Google Scholar
Nagai, J., Owada, K., Kitamura, Y., Goshima, Y., & Ohshima, T. (2016). Inhibition of CRMP2 phosphorylation repairs CNS by regulating neurotrophic and inhibitory responses. Experimental Neurology, 277, 283–295. https://doi.org/10.1016/j.expneurol.2016.01.015
Article CAS PubMed Google Scholar
Nakamura, F., Ohshima, T., & Goshima, Y. (2020). Collapsin response mediator proteins: Their biological functions and pathophysiology in neuronal development and regeneration. Frontiers in Cellular Neuroscience, 14, 188. https://doi.org/10.3389/fncel.2020.00188
Article CAS PubMed PubMed Central Google Scholar
Numata-Uematsu, Y., Wakatsuki, S., Nagano, S., Shibata, M., Sakai, K., Ichinohe, N., Mikoshiba, K., Ohshima, T., Yamashita, N., Goshima, Y., & Araki, T. (2019). Inhibition of collapsin response mediator protein-2 phosphorylation ameliorates motor phenotype of ALS model mice expressing SOD1G93A. Neuroscience Research, 139, 63–68. https://doi.org/10.1016/j.neures.2018.08.016
留言 (0)