Implantation of biomimetic polydopamine nanocomposite scaffold promotes optic nerve regeneration through modulating inhibitory microenvironment

Williams PR, Benowitz LI, Goldberg JL, He Z. Axon Regeneration in the mammalian Optic nerve. Annu Rev Vis Sci. 2020;6:195–213.

Article  PubMed  Google Scholar 

Laha B, Stafford BK, Huberman AD. Regenerating optic pathways from the eye to the brain. Science. 2017;356(6342):1031–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Hao F, Hao P, Zhang J, Wang L, You S-W, Wang N, Yang Z, So K-F, Li X. Regeneration and functional recovery of the completely transected optic nerve in adult rats by CNTF-chitosan. Signal Transduct Target Therapy 2023, 8(1).

Zhang S, Zhu H, Pan Y, Liu X, Jin H, Nan K, Wu W. Exploration of the strategies to enhance the regeneration of the optic nerve. Exp Eye Res 2022, 219.

Richardson PM, McGuinness UM, Aguayo AJ. Axons from CNS neurons regenerate into PNS grafts. Nature. 1980;284(5753):264–5.

Article  CAS  PubMed  Google Scholar 

Sun JH, Li G, Wu TT, Lin ZJ, Zou JL, Huang LJ, Xu HY, Wang JH, Ma YH, Zeng YS. Decellularization optimizes the inhibitory microenvironment of the optic nerve to support neurite growth. Biomaterials. 2020;258:120289.

Article  CAS  PubMed  Google Scholar 

Bai YR, Lai BQ, Han WT, Sun JH, Li G, Ding Y, Zeng X, Ma YH, Zeng YS. Decellularized optic nerve functional scaffold transplant facilitates directional axon regeneration and remyelination in the injured white matter of the rat spinal cord. Neural Regeneration Res. 2021;16(11):2276–83.

Article  CAS  Google Scholar 

Wang J-j, Wang T-z, Guan B, Liu X-x, Gong Z, Li Y, Li L-l. Ke L-n, Nan K-h: implantable patches assembled with mesenchymal stem cells and gelatin/silk fibroin composite microspheres for the treatment of traumatic optic neuropathy. Appl Mater Today 2022, 26.

Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioactive Mater. 2022;10:15–31.

Article  CAS  Google Scholar 

Zarrintaj P, Seidi F, Youssefi Azarfam M, Khodadadi Yazdi M, Erfani A, Barani M, Chauhan NPS, Rabiee N, Kuang T, Kucinska-Lipka J et al. Biopolymer-based composites for tissue engineering applications: a basis for future opportunities. Compos Part B: Eng 2023, 258.

Wu T, Liu L, Gao Z, Cui C, Fan C, Liu Y, Di M, Yang Q, Xu Z, Liu W. Extracellular matrix (ECM)-inspired high-strength gelatin-alginate based hydrogels for bone repair. Biomaterials Sci. 2023;11(8):2877–85.

Article  CAS  Google Scholar 

Wang X, Yao X, Sun Z, Jin Y, Yan Z, Jiang H, Ouyang Y, Yuan WE, Wang C, Fan C. An extracellular matrix mimicking alginate hydrogel scaffold manipulates an inflammatory microenvironment and improves peripheral nerve regeneration by controlled melatonin release. J Mater Chem B. 2023;11(48):11552–61.

Article  CAS  PubMed  Google Scholar 

Zheng G, Yu W, Xu Z, Yang C, Wang Y, Yue Z, Xiao Q, Zhang W, Wu X, Zang F, et al. Neuroimmune modulating and energy supporting nanozyme-mimic scaffold synergistically promotes axon regeneration after spinal cord injury. J Nanobiotechnol. 2024;22(1):399.

Article  CAS  Google Scholar 

Chen S, Li J, Zheng L, Huang J, Wang M. Biomimicking trilayer scaffolds with controlled estradiol release for uterine tissue regeneration. Exploration 2024.

Ma J, Li J, Wang X, Li M, Teng W, Tao Z, Xie J, Ma Y, Shi Q, Li B, et al. GDNF-Loaded Polydopamine nanoparticles-based anisotropic scaffolds promote spinal cord repair by modulating Inhibitory Microenvironment. Adv Healthc Mater. 2023;12(8):e2202377.

Article  PubMed  Google Scholar 

Yang L, Conley BM, Cerqueira SR, Pongkulapa T, Wang S, Lee JK, Lee KB. Effective modulation of CNS inhibitory microenvironment using Bioinspired Hybrid-Nanoscaffold-based therapeutic interventions. Adv Mater. 2020;32(43):e2002578.

Article  PubMed  PubMed Central  Google Scholar 

Silverman SM, Wong WT. Microglia in the retina: roles in Development, Maturity, and Disease. Annu Rev Vis Sci. 2018;4:45–77.

Article  PubMed  Google Scholar 

Yun-Jia L, Xi C, Jie-Qiong Z, Jing-Yi Z, Sen L, Jian Y. Semaphorin3A increases M1-like microglia and retinal ganglion cell apoptosis after optic nerve injury. Cell Biosci. 2021;11(1):97.

Article  PubMed  PubMed Central  Google Scholar 

Pitha I, Kambhampati S, Sharma A, Sharma R, McCrea L, Mozzer A, Kannan RM. Targeted microglial attenuation through Dendrimer–Drug Conjugates improves Glaucoma neuroprotection. Biomacromolecules. 2023;24(3):1355–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res. 2015;45:30–57.

Article  PubMed  Google Scholar 

Rao M, Huang Y-K, Liu C-C, Meadows C, Cheng H-C, Zhou M, Chen Y-C, Xia X, Goldberg JL, Williams AM et al. Aldose reductase inhibition decelerates optic nerve degeneration by alleviating retinal microglia activation. Sci Rep 2023, 13(1).

Wang F, Song Y, Liu P, Ma F, Peng Z, Pang Y, Hu H, Zeng L, Luo H, Zhang X. Rapamycin suppresses neuroinflammation and protects retinal ganglion cell loss after optic nerve crush. Int Immunopharmacol 2023, 119.

Fang L, Liu J, Liu Z, Zhou H. Immune modulating nanoparticles for the treatment of ocular diseases. J Nanobiotechnol. 2022;20(1):496.

Article  Google Scholar 

Mao J, Chen L, Cai Z, Qian S, Liu Z, Zhao B, Zhang Y, Sun X, Cui W. Advanced Biomaterials for regulating polarization of macrophages in Wound Healing. Adv Funct Mater 2021, 32(12).

Ge Y, Rong F, Lu Y, Wang Z, Liu J, Xu F, Chen J, Li W, Wang Y. Glucose oxidase driven hydrogen sulfide-releasing Nanocascade for Diabetic infection treatment. Nano Lett. 2023;23(14):6610–8.

Article  CAS  PubMed  Google Scholar 

Wang Y, Wei X, Wang L, Qian Z, Liu H, Fan Y. Quercetin-based composite hydrogel promotes muscle tissue regeneration through macrophage polarization and oxidative stress attenuation. Compos Part B: Eng 2022, 247.

Fan H, Chen Z, Tang HB, Shan LQ, Chen ZY, Wang XH, Huang DG, Liu SC, Chen X, Yang H et al. Exosomes derived from olfactory ensheathing cells provided neuroprotection for spinal cord injury by switching the phenotype of macrophages/microglia. Bioeng Translational Med 2021, 7(2).

Yang P, Chen L, Shi Y, Zhou F, Tian H, Li J, Gao L. Progesterone alters the activation and typing of the microglia in the optic nerve crush model. Exp Eye Res 2021, 212.

Li H-Y, Huang M, Luo Q-Y, Hong X, Ramakrishna S, So K-F. Lycium barbarum (Wolfberry) increases retinal ganglion cell survival and affects both Microglia/Macrophage polarization and autophagy after rat partial Optic nerve transection. Cell Transpl. 2019;28(5):607–18.

Article  Google Scholar 

Zhang Z, Peng S, Xu T, Liu J, Zhao L, Xu H, Zhang W, Zhu Y, Yang Z. Retinal microenvironment-protected Rhein-GFFYE nanofibers attenuate retinal ischemia-reperfusion Injury via inhibiting oxidative stress and regulating Microglial/Macrophage M1/M2 polarization. Adv Sci 2023:e2302909.

Lin WJ, Kuang HY. Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells. Autophagy. 2014;10(10):1692–701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rong R, Zhou X, Liang G, Li H, You M, Liang Z, Zeng Z, Xiao H, Ji D, Xia X. Targeting cell membranes, depleting ROS by Dithiane and Thioketal-containing polymers with pendant cholesterols delivering Necrostatin-1 for Glaucoma treatment. ACS Nano. 2022;16(12):21225–39.

Article  CAS  PubMed  Google Scholar 

Du Y, Cai M, Mu J, Li X, Song Y, Yuan X, Hua X, Guo S. Type I collagen-adhesive and ROS‐Scavenging nanoreactors enhanced retinal ganglion cell survival in an experimental Optic nerve crush Model. Macromol Rapid Commun 2023.

Nguyen Ngo Le MA, Wen YT, Ho YC, Kapupara K, Tsai RK. Therapeutic effects of Puerarin against Anterior Ischemic Optic Neuropathy through Antiapoptotic and anti-inflammatory actions. Invest Ophthalmol Vis Sci. 2019;60(10):3481–91.

Article  PubMed  Google Scholar 

Ju KY, Lee Y, Lee S, Park SB, Lee JK. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules. 2011;12(3):625–32.

Article  CAS  PubMed  Google Scholar 

Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile polydopamine platforms: synthesis and promising applications for Surface Modification and Advanced Nanomedicine. ACS Nano. 2019;13(8):8537–65.

Article  CAS  PubMed  Google Scholar 

Asha AB, Chen Y, Narain R. Bioinspired dopamine and zwitterionic polymers for non-fouling surface engineering. Chem Soc Rev. 2021;50(20):11668–83.

Article  CAS  PubMed  Google Scholar 

Zhu M, Shi Y, Shan Y, Guo J, Song X, Wu Y, Wu M, Lu Y, Chen W, Xu X, et al. Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics. J Nanobiotechnol. 2021;19(1):387.

Article  CAS  Google Scholar 

Li Z, Chen Z, Chen H, Chen K, Tao W, Ouyang XK, Mei L, Zeng X. Polyphenol-based hydrogels: pyramid evolution from crosslinked structures to biomedical applications and the reverse design. Bioact Mater. 2022;17:49–70.

PubMed  PubMed Central  Google Scholar 

Fan W, Han H, Lu Z, Huang Y, Zhang Y, Chen Y, Zhang X, Ji J, Yao K. Epsilon-poly-L-lysine-modified polydopamine nanoparticles for targeted photothermal therapy of drug-resistant bacterial keratitis. Bioeng Transl Med. 2023;8(1):e10380.

Article  CAS  PubMed  Google Scholar 

Zeng W, Li Z, Huang Q, Ding C, Yang L, Wang W, Shi Z, Yang Y, Chen H, Mei L et al. Multifunctional Mesoporous polydopamine-based systematic delivery of STING agonist for enhanced synergistic Photothermal‐Immunotherapy. Adv Funct Mater 2023.

Kacvinská K, Pavliňáková V, Poláček P, Michlovská L, Blahnová VH, Filová E, Knoz M, Lipový B, Holoubek J, Faldyna M, et al. Accelular nanofibrous bilayer scaffold intrapenetrated with polydopamine network and implemented into a full-thickness wound of a white-pig model affects inflammation and healing process. J Nanobiotechnol. 2023;21(1):80.

Article  Google Scholar 

Bao X, Zhao J, Sun J, Hu M, Yang X. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in Periodontal Disease. ACS Nano. 2018;12(9):8882–92.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif