Targeting serum response factor (SRF) deactivates ΔFosB and mitigates Levodopa-induced dyskinesia in a mouse model of Parkinson’s disease

Tran TN, Vo TNN, Frei K, Truong DD. Levodopa-induced dyskinesia: clinical features, incidence, and risk factors. J Neural Transm (Vienna). 2018;125:1109–17.

Article  CAS  PubMed  Google Scholar 

di Biase L, Pecoraro PM, Carbone SP, Caminiti ML, Di Lazzaro V. Levodopa-induced dyskinesias in Parkinson’s disease: an overview on pathophysiology, clinical manifestations, therapy management strategies and future directions. J Clin Med. 2023;12:4427.

Xiao B, Tan EK. Cell replacement for Parkinson’s disease: advances and challenges. Neural Regen Res. 2023;18:2693–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bezard E, Brotchie JM, Gross CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci. 2001;2:577–88.

Article  CAS  PubMed  Google Scholar 

Eusebi P, Romoli M, Paoletti FP, Tambasco N, Calabresi P, Parnetti L. Risk factors of levodopa-induced dyskinesia in Parkinson’s disease: results from the PPMI cohort. NPJ Parkinsons Dis. 2018;4:33.

Article  PubMed  PubMed Central  Google Scholar 

Cao X, Yasuda T, Uthayathas S, Watts RL, Mouradian MM, Mochizuki H, et al. Striatal overexpression of DeltaFosB reproduces chronic levodopa-induced involuntary movements. J Neurosci. 2010;30:7335–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Svenningsson P, Arts J, Gunne L, Andren PE. Acute and repeated treatment with L-DOPA increase c-jun expression in the 6-hydroxydopamine-lesioned forebrain of rats and common marmosets. Brain Res. 2002;955:8–15.

Article  CAS  PubMed  Google Scholar 

Pavon N, Martin AB, Mendialdua A, Moratalla R. ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry. 2006;59:64–74.

Article  CAS  PubMed  Google Scholar 

Palafox-Sanchez V, Sosti V, Ramirez-Garcia G, Kulisevsky J, Aguilera J, Limon ID. Differential expression of striatal DeltaFosB mRNA and FosB mRNA after different levodopa treatment regimens in a rat model of Parkinson’s disease. Neurotox Res. 2019;35:563–74.

Article  CAS  PubMed  Google Scholar 

Sabatakos G, Rowe GC, Kveiborg M, Wu M, Neff L, Chiusaroli R, et al. Doubly truncated FosB isoform (Delta2DeltaFosB) induces osteosclerosis in transgenic mice and modulates expression and phosphorylation of Smads in osteoblasts independent of intrinsic AP-1 activity. J Bone Min Res. 2008;23:584–95.

Article  CAS  Google Scholar 

Robison AJ, Nestler EJ. DeltaFOSB: a potentially druggable master orchestrator of activity-dependent gene expression. ACS Chem Neurosci. 2022;13:296–307.

Article  CAS  PubMed  Google Scholar 

Chen J, Kelz MB, Hope BT, Nakabeppu Y, Nestler EJ. Chronic Fos-related antigens: stable variants of deltaFosB induced in brain by chronic treatments. J Neurosci. 1997;17:4933–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nestler EJ. ∆FosB: a transcriptional regulator of stress and antidepressant responses. Eur J Pharm. 2015;753:66–72.

Article  CAS  Google Scholar 

Beck G, Zhang J, Fong K, Mochizuki H, Mouradian MM, Papa SM. Striatal DeltaFosB gene suppression inhibits the development of abnormal involuntary movements induced by L-Dopa in rats. Gene Ther. 2021;28:760–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beck G, Singh A, Zhang J, Potts LF, Woo JM, Park ES, et al. Role of striatal DeltaFosB in l-Dopa-induced dyskinesias of parkinsonian nonhuman primates. Proc Natl Acad Sci USA. 2019;116:18664–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Engeln M, Bastide MF, Toulme E, Dehay B, Bourdenx M, Doudnikoff E, et al. Selective inactivation of striatal FosB/DeltaFosB-expressing neurons alleviates L-DOPA-induced dyskinesia. Biol Psychiatry. 2016;79:354–61.

Article  CAS  PubMed  Google Scholar 

Jenner P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci. 2008;9:665–77.

Article  CAS  PubMed  Google Scholar 

Kambey PA, Liu WY, Wu J, Bosco B, Nadeem I, Kanwore K, et al. Single-nuclei RNA sequencing uncovers heterogenous transcriptional signatures in Parkinson’s disease associated with nuclear receptor-related factor 1 defect. Neural Regen Res. 2023;18:2037–46.

CAS  PubMed  PubMed Central  Google Scholar 

Kambey PA, Liu WY, Wu J, Tang C, Buberwa W, Saro A, et al. Amphiregulin blockade decreases the levodopa-induced dyskinesia in a 6-hydroxydopamine Parkinson’s disease mouse model. CNS Neurosci Ther. 2023;29:2925–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kambey PA, Chengcheng M, Xiaoxiao G, Abdulrahman AA, Kanwore K, Nadeem I, et al. The orphan nuclear receptor Nurr1 agonist amodiaquine mediates neuroprotective effects in 6-OHDA Parkinson’s disease animal model by enhancing the phosphorylation of P38 mitogen-activated kinase but not PI3K/AKT signaling pathway. Metab Brain Dis. 2021;36:609–25.

Article  CAS  PubMed  Google Scholar 

Monville C, Torres EM, Dunnett SB. Validation of the l-dopa-induced dyskinesia in the 6-OHDA model and evaluation of the effects of selective dopamine receptor agonists and antagonists. Brain Res Bull. 2005;68:16–23.

Article  CAS  PubMed  Google Scholar 

Dekundy A, Lundblad M, Danysz W, Cenci MA. Modulation of L-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav Brain Res. 2007;179:76–89.

Article  CAS  PubMed  Google Scholar 

Cantuti-Castelvetri I, Hernandez LF, Keller-McGandy CE, Kett LR, Landy A, Hollingsworth ZR, et al. Levodopa-induced dyskinesia is associated with increased thyrotropin releasing hormone in the dorsal striatum of hemi-parkinsonian rats. PLoS One. 2010;5:e13861.

Article  PubMed  PubMed Central  Google Scholar 

Zhu JL, Wu YY, Wu D, Luo WF, Zhang ZQ, Liu CF. SC79, a novel Akt activator, protects dopaminergic neuronal cells from MPP(+) and rotenone. Mol Cell Biochem. 2019;461:81–9.

Article  CAS  PubMed  Google Scholar 

Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019;26:2284–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goyal A, Agrawal A, Verma A, Dubey N. The PI3K-AKT pathway: a plausible therapeutic target in Parkinson’s disease. Exp Mol Pathol. 2023;129:104846.

Article  PubMed  Google Scholar 

Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. PI3K/AKT signal pathway: a target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease. Front Pharm. 2021;12:648636.

Article  CAS  Google Scholar 

Tran J, Anastacio H, Bardy C. Genetic predispositions of Parkinson’s disease revealed in patient-derived brain cells. NPJ Parkinsons Dis. 2020;6:8.

Article  PubMed  PubMed Central  Google Scholar 

Abbott A. Levodopa: the story so far. Nature. 2010;466:S6–7.

Article  CAS  PubMed  Google Scholar 

Calne DB, Sandler M. L-Dopa and Parkinsonism. Nature. 1970;226:21–4.

Article  CAS  PubMed  Google Scholar 

Raket LL, Oudin Astrom D, Norlin JM, Kellerborg K, Martinez-Martin P, Odin P. Impact of age at onset on symptom profiles, treatment characteristics and health-related quality of life in Parkinson’s disease. Sci Rep. 2022;12:526.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif