Improving working memory by electrical stimulation and cross-frequency coupling

Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829–39. https://doi.org/10.1038/nrn1201.

Article  CAS  PubMed  Google Scholar 

Logie RH. The functional organization and capacity limits of working memory. Curr Dir Psychol Sci. 2011;20:240–5. https://doi.org/10.1177/0963721411415340.

Article  Google Scholar 

Baddeley A. The fractionation of working memory. Proc Natl Acad Sci USA. 1996;93:13468. https://doi.org/10.1073/PNAS.93.24.13468.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bruyer R, Scailquin JC. The visuospatial sketchpad for mental images: testing the multicomponent model of working memory. Acta Psychol. 1998;98:17–36. https://doi.org/10.1016/S0001-6918(97)00053-X.

Article  CAS  Google Scholar 

Sims VK, Hegarty M. Mental animation in the visuospatial sketchpad: evidence from dual-task studies. Mem Cognit. 1997;25:32–332.

Article  Google Scholar 

Zhenzhu Y, Zhang M, Zhou X. Chinese science bulletin updating verbal and visuospatial working memory: are the processes parallel? Chin Sci Bull. 2008;53:2175–85. https://doi.org/10.1007/s11434-008-0299-0.

Article  Google Scholar 

Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41:49–100. https://doi.org/10.1006/COGP.1999.0734.

Article  CAS  PubMed  Google Scholar 

Stegmayer K, Usher J, Trost S, Henseler I, Tost H, Rietschel M, et al. Disturbed cortico–amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder. Eur Arch Psychiatry Clin Neurosci. 2015;265:303–11. https://doi.org/10.1007/s00406-014-0517-5.

Article  PubMed  Google Scholar 

Maehler C, Schuchardt K. Working memory in children with specific learning disorders and/or attention deficits. Learn Individ Differ. 2016;49:341–7. https://doi.org/10.1016/j.lindif.2016.05.007.

Article  Google Scholar 

Grot S, Légaré VP, Lipp O, Soulières I, Dolcos F, Luck D. Abnormal prefrontal and parietal activity linked to deficient active binding in working memory in schizophrenia. Schizophr Res. 2017;188:68–74. https://doi.org/10.1016/j.schres.2017.01.021.

Article  PubMed  Google Scholar 

Cowan N. What are the differences between long-term, short-term, and working memory? Prog Brain Res. 2008;169:323. https://doi.org/10.1016/S0079-6123(07)00020-9.

Article  PubMed  PubMed Central  Google Scholar 

Cowan N. Working memory underpins cognitive development, learning, and education. Educ Psychol Rev. 2014;26:197–223. https://doi.org/10.1007/s10648-013-9246-y.

Article  PubMed  Google Scholar 

Ando M, Kukihara H, Ide N. Executive function measured by Stroop test and mood for elderly people in a facility for the elderly. Clin Case Rep Rev. 2017. https://doi.org/10.15761/CCRR.1000305.

Article  Google Scholar 

Gläscher J, Adolphs R, Tranel D. Model-based lesion mapping of cognitive control using the Wisconsin card sorting test. Nat Commun. 2019;10(1):1–12. https://doi.org/10.1038/s41467-018-07912-5.

Article  CAS  Google Scholar 

Parr WV, White MJ. Delayed matching-to-sample performance as a measure of human visuospatial working memory. Bull Psychon Soc. 2013;30(5):369–72. https://doi.org/10.3758/BF03334092.

Article  Google Scholar 

Foster JL, Shipstead Z, Harrison TL, Hicks KL, Redick TS, Engle RW. Shortened complex span tasks can reliably measure working memory capacity. Mem Cogn. 2014;43(2):226–36. https://doi.org/10.3758/S13421-014-0461-7.

Article  Google Scholar 

Jensen O, Spaak E, Zumer JM. Human brain oscillations: from physiological mechanisms to analysis and cognition. In: Supek S, Aine CJ, editors. Magnetoencephalography: from signals to dynamic cortical networks, vol. 9783642330. Berlin Heidelberg: Springer-Verlag; 2014. p. 359–403.

Chapter  Google Scholar 

Cebolla AM, Cheron G. Understanding neural oscillations in the human brain: from movement to consciousness and vice versa. Front Psychol. 2019;10:1930. https://doi.org/10.3389/fpsyg.2019.01930.

Article  PubMed  PubMed Central  Google Scholar 

Jensen O, Spaak E, Zumer JM. Human brain oscillations: from physiological mechanisms to analysis and cognition. In: Supek S, Aine CJ, editors. Magnetoencephalography. Berlin: Springer International Publishing; 2019. p. 1–46. https://doi.org/10.1007/978-3-319-62657-4_17-1.

Chapter  Google Scholar 

Roux F, Uhlhaas PJ. Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn Sci. 2014;18:16–25. https://doi.org/10.1016/j.tics.2013.10.010.

Article  PubMed  Google Scholar 

Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11:267–9. https://doi.org/10.1016/j.tics.2007.05.003.

Article  PubMed  Google Scholar 

Bahramisharif A, Jensen O, Jacobs J, Lisman J. Serial representation of items during working memory maintenance at letter-selective cortical sites. PLOS Biol. 2018;16: e2003805. https://doi.org/10.1371/JOURNAL.PBIO.2003805.

Article  PubMed  PubMed Central  Google Scholar 

Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, Fell J. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci USA. 2010;107:3228–33. https://doi.org/10.1073/pnas.0911531107.

Article  PubMed  PubMed Central  Google Scholar 

Lisman JE, Jensen O. The theta-gamma neural code. Neuron. 2013. https://doi.org/10.1016/j.neuron.2013.03.007.

Article  PubMed  PubMed Central  Google Scholar 

Lisman JE, Idiart MAP. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science. 1995;267:1512–5. https://doi.org/10.1126/science.7878473.

Article  CAS  PubMed  Google Scholar 

Jensen O, Lisman JE. Novel lists of 7±2 known items can be reliably stored in an oscillatory short-term memory network: interaction with long-term memory. Learn Mem. 1996;3:257–63.

Article  CAS  PubMed  Google Scholar 

Herman PA, Lundqvist M, Lansner A. Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network. Brain Res. 2013;1536:68–87. https://doi.org/10.1016/j.brainres.2013.08.002.

Article  CAS  PubMed  Google Scholar 

Van Vugt MK, Chakravarthi R, Lachaux J-P. For whom the bell tolls: periodic reactivation of sensory cortex in the gamma band as a substrate of visual working memory maintenance. Front Hum Neurosci. 2014;8:696. https://doi.org/10.3389/fnhum.2014.00696.

Article  PubMed  PubMed Central  Google Scholar 

Adrian ED, Matthews BHC. The interpretation of potential waves in the cortex. J Physiol. 1934;81:440–71. https://doi.org/10.1113/jphysiol.1934.sp003147.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Whittingstall K, Logothetis NK. Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron. 2009;64:281–9. https://doi.org/10.1016/j.neuron.2009.08.016.

Article  CAS  PubMed  Google Scholar 

Sahlem GL, Badran BW, Halford JJ, Williams NR, Korte JE, Leslie K, et al. Oscillating square wave transcranial direct current stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: a randomized sham controlled crossover study. Brain Stimul. 2015;8:528–34. https://doi.org/10.1016/j.brs.2015.01.414.

Article  PubMed  PubMed Central  Google Scholar 

Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3. https://doi.org/10.1038/nature05278.

Article 

留言 (0)

沒有登入
gif