Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829–39. https://doi.org/10.1038/nrn1201.
Article CAS PubMed Google Scholar
Logie RH. The functional organization and capacity limits of working memory. Curr Dir Psychol Sci. 2011;20:240–5. https://doi.org/10.1177/0963721411415340.
Baddeley A. The fractionation of working memory. Proc Natl Acad Sci USA. 1996;93:13468. https://doi.org/10.1073/PNAS.93.24.13468.
Article CAS PubMed PubMed Central Google Scholar
Bruyer R, Scailquin JC. The visuospatial sketchpad for mental images: testing the multicomponent model of working memory. Acta Psychol. 1998;98:17–36. https://doi.org/10.1016/S0001-6918(97)00053-X.
Sims VK, Hegarty M. Mental animation in the visuospatial sketchpad: evidence from dual-task studies. Mem Cognit. 1997;25:32–332.
Zhenzhu Y, Zhang M, Zhou X. Chinese science bulletin updating verbal and visuospatial working memory: are the processes parallel? Chin Sci Bull. 2008;53:2175–85. https://doi.org/10.1007/s11434-008-0299-0.
Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41:49–100. https://doi.org/10.1006/COGP.1999.0734.
Article CAS PubMed Google Scholar
Stegmayer K, Usher J, Trost S, Henseler I, Tost H, Rietschel M, et al. Disturbed cortico–amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder. Eur Arch Psychiatry Clin Neurosci. 2015;265:303–11. https://doi.org/10.1007/s00406-014-0517-5.
Maehler C, Schuchardt K. Working memory in children with specific learning disorders and/or attention deficits. Learn Individ Differ. 2016;49:341–7. https://doi.org/10.1016/j.lindif.2016.05.007.
Grot S, Légaré VP, Lipp O, Soulières I, Dolcos F, Luck D. Abnormal prefrontal and parietal activity linked to deficient active binding in working memory in schizophrenia. Schizophr Res. 2017;188:68–74. https://doi.org/10.1016/j.schres.2017.01.021.
Cowan N. What are the differences between long-term, short-term, and working memory? Prog Brain Res. 2008;169:323. https://doi.org/10.1016/S0079-6123(07)00020-9.
Article PubMed PubMed Central Google Scholar
Cowan N. Working memory underpins cognitive development, learning, and education. Educ Psychol Rev. 2014;26:197–223. https://doi.org/10.1007/s10648-013-9246-y.
Ando M, Kukihara H, Ide N. Executive function measured by Stroop test and mood for elderly people in a facility for the elderly. Clin Case Rep Rev. 2017. https://doi.org/10.15761/CCRR.1000305.
Gläscher J, Adolphs R, Tranel D. Model-based lesion mapping of cognitive control using the Wisconsin card sorting test. Nat Commun. 2019;10(1):1–12. https://doi.org/10.1038/s41467-018-07912-5.
Parr WV, White MJ. Delayed matching-to-sample performance as a measure of human visuospatial working memory. Bull Psychon Soc. 2013;30(5):369–72. https://doi.org/10.3758/BF03334092.
Foster JL, Shipstead Z, Harrison TL, Hicks KL, Redick TS, Engle RW. Shortened complex span tasks can reliably measure working memory capacity. Mem Cogn. 2014;43(2):226–36. https://doi.org/10.3758/S13421-014-0461-7.
Jensen O, Spaak E, Zumer JM. Human brain oscillations: from physiological mechanisms to analysis and cognition. In: Supek S, Aine CJ, editors. Magnetoencephalography: from signals to dynamic cortical networks, vol. 9783642330. Berlin Heidelberg: Springer-Verlag; 2014. p. 359–403.
Cebolla AM, Cheron G. Understanding neural oscillations in the human brain: from movement to consciousness and vice versa. Front Psychol. 2019;10:1930. https://doi.org/10.3389/fpsyg.2019.01930.
Article PubMed PubMed Central Google Scholar
Jensen O, Spaak E, Zumer JM. Human brain oscillations: from physiological mechanisms to analysis and cognition. In: Supek S, Aine CJ, editors. Magnetoencephalography. Berlin: Springer International Publishing; 2019. p. 1–46. https://doi.org/10.1007/978-3-319-62657-4_17-1.
Roux F, Uhlhaas PJ. Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn Sci. 2014;18:16–25. https://doi.org/10.1016/j.tics.2013.10.010.
Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11:267–9. https://doi.org/10.1016/j.tics.2007.05.003.
Bahramisharif A, Jensen O, Jacobs J, Lisman J. Serial representation of items during working memory maintenance at letter-selective cortical sites. PLOS Biol. 2018;16: e2003805. https://doi.org/10.1371/JOURNAL.PBIO.2003805.
Article PubMed PubMed Central Google Scholar
Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, Fell J. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci USA. 2010;107:3228–33. https://doi.org/10.1073/pnas.0911531107.
Article PubMed PubMed Central Google Scholar
Lisman JE, Jensen O. The theta-gamma neural code. Neuron. 2013. https://doi.org/10.1016/j.neuron.2013.03.007.
Article PubMed PubMed Central Google Scholar
Lisman JE, Idiart MAP. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science. 1995;267:1512–5. https://doi.org/10.1126/science.7878473.
Article CAS PubMed Google Scholar
Jensen O, Lisman JE. Novel lists of 7±2 known items can be reliably stored in an oscillatory short-term memory network: interaction with long-term memory. Learn Mem. 1996;3:257–63.
Article CAS PubMed Google Scholar
Herman PA, Lundqvist M, Lansner A. Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network. Brain Res. 2013;1536:68–87. https://doi.org/10.1016/j.brainres.2013.08.002.
Article CAS PubMed Google Scholar
Van Vugt MK, Chakravarthi R, Lachaux J-P. For whom the bell tolls: periodic reactivation of sensory cortex in the gamma band as a substrate of visual working memory maintenance. Front Hum Neurosci. 2014;8:696. https://doi.org/10.3389/fnhum.2014.00696.
Article PubMed PubMed Central Google Scholar
Adrian ED, Matthews BHC. The interpretation of potential waves in the cortex. J Physiol. 1934;81:440–71. https://doi.org/10.1113/jphysiol.1934.sp003147.
Article CAS PubMed PubMed Central Google Scholar
Whittingstall K, Logothetis NK. Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron. 2009;64:281–9. https://doi.org/10.1016/j.neuron.2009.08.016.
Article CAS PubMed Google Scholar
Sahlem GL, Badran BW, Halford JJ, Williams NR, Korte JE, Leslie K, et al. Oscillating square wave transcranial direct current stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: a randomized sham controlled crossover study. Brain Stimul. 2015;8:528–34. https://doi.org/10.1016/j.brs.2015.01.414.
Article PubMed PubMed Central Google Scholar
Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3. https://doi.org/10.1038/nature05278.
留言 (0)