Blockade of ITGA2/3/5 Promotes Adipogenic Differentiation of Human Adipose-derived Mesenchymal Stem Cells

Squillaro, T., Peluso, G., & Galderisi, U. (2016). Clinical trials with mesenchymal stem cells: An update. Cell Transplant, 25(5), 829–848.

Article  PubMed  Google Scholar 

Davis, M., Perdanasari, A., Abu-Ghname, A., Gonzalez, S., Chamata, E., Rammos, C., & Winocour, S. (2020). Application of fat grafting in cosmetic breast surgery. Seminars in Plastic Surgery, 34(1), 24–29.

Article  PubMed  PubMed Central  Google Scholar 

Ramot, Y., Silyuk, T., Murad, S., & Zlotogorski, A. (2020). Hirsutism induced by facial autologous fat grafting. Skin Appendage Disord, 6(1), 41–43.

Article  PubMed  Google Scholar 

McIntosh, K., Zvonic, S., Garrett, S., Mitchell, J. B., Floyd, Z. E., Hammill, L., Kloster, A., Di Halvorsen, Y., Ting, J. P., Storms, R. W., Goh, B., Kilroy, G., Wu, X., & Gimble, J. M. (2006). The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells, 24(5), 1246–1253.

Article  CAS  PubMed  Google Scholar 

Song, Y., Kamphuis, M. M., Zhang, Z., Sterk, L. M., Vermes, I., Poot, A. A., Feijen, J., & Grijpma, D. W. (2010). Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering. Acta Biomaterialia, 6(4), 1269–1277.

Article  CAS  PubMed  Google Scholar 

Tsuji, W., Rubin, J. P., & Marra, K. G. (2014). Adipose-derived stem cells: Implications in tissue regeneration. World Journal of Stem Cells, 6(3), 312–321.

Article  PubMed  PubMed Central  Google Scholar 

Bianchi, A., Gervasi, M. E., & Bakin, A. (2010). Role of β5-integrin in epithelial-mesenchymal transition in response to TGF-β. Cell Cycle, 9(8), 1647–1659.

Article  CAS  PubMed  Google Scholar 

Janes, S. M., & Watt, F. M. (2006). New roles for integrins in squamous-cell carcinoma. Nature Reviews Cancer, 6(3), 175–183.

Article  CAS  PubMed  Google Scholar 

Mierke, C. T., Frey, B., Fellner, M., Herrmann, M., & Fabry, B. (2011). Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces. Journal of Cell Science, 124(Pt 3), 369–383.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, T., Chen, R., Wang, J., Yue, H., Lu, X., & Li, J. (2020). The prognostic value of ITGA and ITGB superfamily members in patients with high grade serous ovarian cancer. Cancer Cell International, 20, 257.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Francesco, F., Ricci, G., D’Andrea, F., Nicoletti, G. F., & Ferraro, G. A. (2015). Human adipose stem cells: From bench to bedside. Tissue Engineering Part B Review, 21(6), 572–584.

Article  Google Scholar 

Huang, Y., Enzmann, V., & Ildstad, S. (2011). Stem cell-based therapeutic applications in retinal degenerative diseases. Stem Cell Reviews and Reports, 7(2), 434–445.

Article  PubMed  Google Scholar 

Gaur, M., Dobke, M., & Lunyak, V. V. (2017). Mesenchymal stem cells from adipose tissue in clinical applications for dermatological indications and skin aging. International Journal of Molecular Science, 18(1), 208.

Article  Google Scholar 

O’Halloran, N., Courtney, D., Kerin, M. J., & Lowery, A. J. (2017). Adipose-derived stem cells in novel approaches to breast reconstruction: Their suitability for tissue engineering and oncological safety. Breast Cancer, 11, 1178223417726777.

PubMed  Google Scholar 

Ye, X., Liao, C., & Liu, G. (2016). Age-related changes in the regenerative potential of adipose-derived stem cells isolated from the prominent fat pads in human lower eyelids. PLoS ONE, 11(11), e0166590.

Article  PubMed  PubMed Central  Google Scholar 

Volz, A. C., Huber, B., & Kluger, P. J. (2016). Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering. Differentiation, 92(1-2), 52–64.

Article  CAS  PubMed  Google Scholar 

Giancotti, F. G. (1997). Integrin signaling: specificity and control of cell survival and cell cycle progression. Current Opinion in Cell Biology, 9(5), 691–700.

Article  CAS  PubMed  Google Scholar 

Lock, R., & Debnath, J. (2008). Extracellular matrix regulation of autophagy. Current Opinion in Cell Biology, 20(5), 583–588.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ginsberg, M. H. (1995). Integrins: dynamic regulation of ligand binding. Biochemical Society Transactions, 23(3), 439–446.

Article  CAS  PubMed  Google Scholar 

Hamidi, H. & & Ivaska, J. (2018). Every step of the way: integrins in cancer progression and metastasis.Nature Reviews Cancer, 18(9), 533–548.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tong, H., Qi, D., Guan, X., Jiang, G., Liao, Z., Zhang, X., Chen, P., Li, N., & Wu, M. (2018). c-Abl tyrosine kinase regulates neutrophil crawling behavior under fluid shear stress via Rac/PAK/LIMK/cofilin signaling axis. Journal of Cellular Biochemistry, 119(3), 2806–2817.

Article  CAS  PubMed  Google Scholar 

Misra, U. K., Deedwania, R., & Pizzo, S. V. (2005). Binding of activated alpha2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. Journal of Biological Chemistry, 280(28), 26278–26286.

Article  CAS  PubMed  Google Scholar 

Chiricosta, L., Silvestro, S., Gugliandolo, A., Marconi, G. D., Pizzicannella, J., Bramanti, P., Trubiani, O., & Mazzon, E. (2020). Extracellular vesicles of human periodontal ligament stem cells contain MicroRNAs associated to proto-oncogenes: Implications in cytokinesis. Frontiers in Genetics, 11, 582.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Veloso, A., Martin, M., Bruyr, J., O’Grady, T., Deroanne, C., Mottet, D., Twizere, J. C., Cherrier, T., & Dequiedt, F. (2019). Dephosphorylation of HDAC4 by PP2A-Bδ unravels a new role for the HDAC4/MEF2 axis in myoblast fusion. Cell Death & Diseases, 10(7), 512.

Article  Google Scholar 

留言 (0)

沒有登入
gif