Rab3B Proteins: Cellular Functions, Regulatory Mechanisms, and Potential as a Cancer Therapy Target

Li, S., Song, Y., & Wang, K., et al. (2023). USP32 deubiquitinase: cellular functions, regulatory mechanisms, and potential as a cancer therapy target. Cell Death Discovery, 9(1), 338. https://doi.org/10.1038/s41420-023-01629-1.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bhuin, T., & Roy, J. K. (2014). Rab proteins: the key regulators of intracellular vesicle transport. Experimental Cell Research, 328(1), 1–19. https://doi.org/10.1016/j.yexcr.2014.07.027.

Article  PubMed  CAS  Google Scholar 

Wang, X., Yu, D., & Wang, H., et al. (2022). Rab3 and synaptotagmin proteins in the regulation of vesicle fusion and neurotransmitter release. Life Sciences, 309, 120995. https://doi.org/10.1016/j.lfs.2022.120995.

Article  PubMed  CAS  Google Scholar 

Chappie, J. S., Acharya, S., Leonard, M., Schmid, S. L., & Dyda, F. (2010). G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature, 465(7297), 435–440. https://doi.org/10.1038/nature09032.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang, W., Shen, Y., Jiao, R., Liu, Y., Deng, L., & Qi, C. (2012). Crystal structure of inactive form of Rab3B. Biochemical and Biophysical Research Communications, 418(4), 841–844. https://doi.org/10.1016/j.bbrc.2012.01.124.

Article  PubMed  CAS  Google Scholar 

Jumper, J., Evans, R., & Pritzel, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Homma, Y., Hiragi, S., & Fukuda, M. (2021). Rab family of small GTPases: an updated view on their regulation and functions. The FEBS Journal, 288(1), 36–55. https://doi.org/10.1111/febs.15453.

Article  PubMed  CAS  Google Scholar 

Rai, A., Singh, A. K., Bleimling, N., Posern, G., Vetter, I. R. & Goody, R. S. (2022). Rep15 interacts with several Rab GTPases and has a distinct fold for a Rab effector. Nature Communications, 13(1), 4262. https://doi.org/10.1038/s41467-022-31831-1.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Borchers, A. C., Langemeyer, L., & Ungermann, C. (2021). Who’s in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. Journal of Cell Biology, 220(9), e202105120. https://doi.org/10.1083/jcb.202105120.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nature Reviews Molecular Cell Biology, 10(8), 513–525. https://doi.org/10.1038/nrm2728.

Article  PubMed  CAS  Google Scholar 

Zou, L., Zhou, J., & Zhang, J., et al. (2009). The GTPase Rab3b/3c-positive recycling vesicles are involved in cross-presentation in dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15801–15806. https://doi.org/10.1073/pnas.0905684106.

Article  PubMed  PubMed Central  Google Scholar 

Xu, L., Nagai, Y., Kajihara, Y., Ito, G. & Tomita, T. (2021). The regulation of rab GTPases by phosphorylation. Biomolecules, 11(9), 1340. https://doi.org/10.3390/biom11091340.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Waschbüsch, D., & Khan, A. R. (2020). Phosphorylation of Rab GTPases in the regulation of membrane trafficking. Traffic, 21(11), 712–719. https://doi.org/10.1111/tra.12765.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pfeffer, S. R. (2023). LRRK2 phosphorylation of Rab GTPases in Parkinson’s disease. FEBS Letters, 597(6), 811–818. https://doi.org/10.1002/1873-3468.14492.

Article  PubMed  CAS  Google Scholar 

Yao, G., Yu, S. & Hou, F. et al. (2024). Rab3B enhances the stabilization of DDX6 to promote lung adenocarcinoma aggressiveness. Molecular Medicine, 30(1), 75. https://doi.org/10.1186/s10020-024-00848-1.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bardy, C., van den Hurk, M., & Kakaradov, B., et al. (2016). Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology. Molecular Psychiatry, 21(11), 1573–1588. https://doi.org/10.1038/mp.2016.158.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S., & Zhuang, X. (2015). RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science, 348(6233), aaa6090. https://doi.org/10.1126/science.aaa6090.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Storck, E. M., Morales-Sanfrutos, J., & Serwa, R. A., et al. (2019). Dual chemical probes enable quantitative system-wide analysis of protein prenylation and prenylation dynamics. Nature Chemistry, 11(6), 552–561. https://doi.org/10.1038/s41557-019-0237-6.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wu, A. P., Qing, H., & Quan, Z. Z. (2021). The roles of Rab protein family in neurological diseases. Yi Chuan, 43(1), 16–29. https://doi.org/10.16288/j.yczz.20-318.

Article  PubMed  CAS  Google Scholar 

Liu, X. S., Chen, Y. L., & Chen, Y. X., et al. (2024). Pan-cancer analysis reveals correlation between RAB3B expression and tumor heterogeneity, immune microenvironment, and prognosis in multiple cancers. Scientific Reports, 14(1), 9881. https://doi.org/10.1038/s41598-024-60581-xIF:3.8Q1.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chung, C. Y., Koprich, J. B., Hallett, P. J., & Isacson, O. (2009). Functional enhancement and protection of dopaminergic terminals by RAB3B overexpression. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22474–22479. https://doi.org/10.1073/pnas.0912193106.

Article  PubMed  PubMed Central  Google Scholar 

Tan, P. Y., Chang, C. W., Chng, K. R., Wansa, K. D., Sung, W. K., & Cheung, E. (2012). Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Molecular and Cellular Biology, 32(2), 399–414. https://doi.org/10.1128/MCB.05958-11-.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kabbout, M., Garcia, M. M., & Fujimoto, J., et al. (2013). ETS2 mediated tumor suppressive function and MET oncogene inhibition in human non-small cell lung cancer. Clinical Cancer Research, 19(13), 3383–3395. https://doi.org/10.1158/1078-0432.CCR-13-0341.

Article  PubMed  CAS  Google Scholar 

Lin, C., Chen, Y., Zhang, F., Liu, B., Xie, C. & Song, Y. (2022). Encoding gene RAB3B exists in linear chromosomal and circular extrachromosomal DNA and contributes to cisplatin resistance of hypopharyngeal squamous cell carcinoma via inducing autophagy. Cell Death & Disease, 13(2), 171. https://doi.org/10.1038/s41419-022-04627-w.

Article  CAS  Google Scholar 

Kat, M., Bürgisser, P. E., & Janssen, H., et al. (2021). GDP/GTP exchange factor MADD drives activation and recruitment of secretory Rab GTPases to Weibel-Palade bodies. Blood Advances, 5(23), 5116–5127. https://doi.org/10.1182/bloodadvances.2021004827.

Article  PubMed  PubMed Central  CAS  Google Scholar 

van IJzendoorn, S. C., Tuvim, M. J., Weimbs, T., Dickey, B. F., & Mostov, K. E. (2002). Direct interaction between Rab3b and the polymeric immunoglobulin receptor controls ligand-stimulated transcytosis in epithelial cells. Developmental Cell, 2(2), 219–228.

留言 (0)

沒有登入
gif