Analysis of Differentially Expressed Murine miRNAs in Acute Myocardial Infarction and Target Genes Related to Heart Rate

Xiong, Y. Y., et al. (2021). The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction. Theranostics, 11(3), 1046–1058.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nichols, M., et al. (2014). Cardiovascular disease in Europe 2014: epidemiological update. European Heart Journal, 35(42), 2950–2959.

Article  CAS  PubMed  Google Scholar 

Anderson, J. L., & Morrow, D. A. (2017). Acute Myocardial Infarction. The New England Journal of Medicine, 376(21), 2053–2064.

Article  CAS  PubMed  Google Scholar 

Wal, P., et al. (2023). Myocardial Infarction as a Consequence of Mitochondrial Dysfunction. Current Cardiology Reviews, 19(6), 23–30.

Article  PubMed  Google Scholar 

Brenner, C. (2018). In depth understanding of adverse ventricular remodeling after acute myocardial infarction. International Journal of Cardiology, 257, 34.

Article  PubMed  Google Scholar 

Fox, K., et al. (2008). Heart rate as a prognostic risk factor in patients with coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a subgroup analysis of a randomised controlled trial. Lancet, 372(9641), 817–821.

Article  PubMed  Google Scholar 

Fox, K., et al. (2008). Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet, 372(9641), 807–816.

Article  CAS  PubMed  Google Scholar 

Li, C., et al. (2022). First post-discharge heart rate and long-term prognosis in patients with acute myocardial infarction. Reviews in Cardiovascular Medicine, 23(1), 24.

Article  PubMed  Google Scholar 

Gundersen, T., et al. (1986). Effect of timolol on mortality and reinfarction after acute myocardial infarction: prognostic importance of heart rate at rest. American Journal of Cardiology, 58(1), 20–24.

Article  CAS  PubMed  Google Scholar 

Ohyama, Y., et al. (2016). Association of Aortic Stiffness With Left Ventricular Remodeling and Reduced Left Ventricular Function Measured by Magnetic Resonance Imaging: The Multi-Ethnic Study of Atherosclerosis. Circulation: Cardiovascular Imaging, 9(7), 10.1161/CIRCIMAGING.115.004426 e004426.

Wang, Q., et al. (2020). The biomarkers of key miRNAs and target genes associated with acute myocardial infarction. PeerJournal, 8, e9129.

Google Scholar 

Chen, L., et al. (2019). Trends in the development of miRNA bioinformatics tools. Briefings in Bioinformatics, 20(5), 1836–1852.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almaghrbi, H., et al. (2023). Non-coding RNAs as biomarkers of myocardial infarction. Clinica Chimica Acta, 540, 117222.

Article  CAS  Google Scholar 

Song, R., et al. (2022). MicroRNA-210 Controls Mitochondrial Metabolism and Protects Heart Function in Myocardial Infarction. Circulation, 145(15), 1140–1153.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, Q., et al. (2023). EGCG attenuated acute myocardial infarction by inhibiting ferroptosis via miR-450b-5p/ACSL4 axis. Phytomedicine, 119, 154999.

Article  CAS  PubMed  Google Scholar 

Mi, X. L., et al. (2022). Prognostic value of circulating microRNA-21-5p and microRNA-126 in patients with acute myocardial infarction and infarct-related artery total occlusion. Frontiers in Cardiovascular Medicine, 9, 947721.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, W., et al. (2020). TBC1D15/RAB7-regulated mitochondria-lysosome interaction confers cardioprotection against acute myocardial infarction-induced cardiac injury. Theranostics, 10(24), 11244–11263.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140.

Article  CAS  PubMed  Google Scholar 

Xie, C., et al. (2011). KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 39, W316–W322. (Web Server issue).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashburner, M., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genetics, 25(1), 25–29.

Article  CAS  PubMed  Google Scholar 

Zheng, X., et al. (2018). MicroRNA-transcription factor network analysis reveals miRNAs cooperatively suppress RORA in oral squamous cell carcinoma. Oncogenesis, 7(10), 79.

Article  PubMed  PubMed Central  Google Scholar 

Smoot, M. E., et al. (2011). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27(3), 431–432.

Article  CAS  PubMed  Google Scholar 

Kim, J. W., et al. (2012). A common variant in SLC8A1 is associated with the duration of the electrocardiographic QT interval. American Journal of Human Genetics, 91(1), 180–184.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimizu, C., et al. (2016). Genetic Variation in the SLC8A1 Calcium Signaling Pathway Is Associated With Susceptibility to Kawasaki Disease and Coronary Artery Abnormalities. Circulation: Cardiovascular Genetics, 9(6), 559–568.

CAS  PubMed  Google Scholar 

Zhong, Z., et al. (2020). Expression profiling and bioinformatics analysis of circulating microRNAs in patients with acute myocardial infarction. Journal of Clinical Laboratory Analysis, 34(3), e23099.

Article  PubMed  Google Scholar 

Li, J., et al. (2022). Serum miRNA-203 as a Novel Biomarker for the Early Prediction of Acute ST-elevation Myocardial Infarction. Journal of Cardiovascular Translational Research, 15(6), 1406–1413.

Article  PubMed  Google Scholar 

Olivieri, F., et al. (2013). Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. International Journal of Cardiology, 167(2), 531–536.

Article  PubMed  Google Scholar 

Haghikia, A., et al. (2014). STAT3, a key regulator of cell-to-cell communication in the heart. Cardiovascular Research, 102(2), 281–289.

Article  CAS  PubMed  Google Scholar 

Omorou, M., et al. (2023). The forkhead box O3 (FOXO3): a key player in the regulation of ischemia and reperfusion injury. Cell Molecular Life Science, 80(4), 102.

Article  CAS  Google Scholar 

Nishiyama, T., et al. (2012). miR-142-3p is essential for hematopoiesis and affects cardiac cell fate in zebrafish. Biochemistry Biophysics Research Communication, 425(4), 755–761.

Article  CAS  Google Scholar 

Kim, J. O., et al. (2018). A novel system-level approach using RNA-sequencing data identifies miR-30-5p and miR-142a-5p as key regulators of apoptosis in myocardial infarction. Science Reports, 8(1), 14638.

Article  Google Scholar 

Eijkelenboom, A., & Burgering, B. M. (2013). FOXOs: signalling integrators for homeostasis maintenance. Nature Reviews Molecular Cell Biology, 14(2), 83–97.

Article  CAS  PubMed  Google Scholar 

Zhu, M., et al. (2015). FoxO4 promotes early inflammatory response upon myocardial infarction via endothelial Arg1. Circulation Research, 117(11), 967–977.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif