Structural features within the NORAD long noncoding RNA underlie efficient repression of Pumilio activity

Ulitsky, I. & Bartel, D. P. lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26–46 (2013).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jens, M. & Rajewsky, N. Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat. Rev. Genet. 16, 113–126 (2015).

Article  PubMed  CAS  Google Scholar 

Lee, S. et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164, 69–80 (2016).

Article  PubMed  CAS  Google Scholar 

Tichon, A. et al. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nat. Commun. 7, 12209 (2016).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Munschauer, M. et al. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature 561, 132–136 (2018).

Article  PubMed  CAS  Google Scholar 

Elguindy, M. M. et al. PUMILIO, but not RBMX, binding is required for regulation of genomic stability by noncoding RNA NORAD. eLife 8, e48625 (2019).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kopp, F. et al. PUMILIO hyperactivity drives premature aging of Norad-deficient mice. eLife 8, e42650 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Zhao, X., Wei, X., Wang, X. & Qi, G. Long non‑coding RNA NORAD regulates angiogenesis of human umbilical vein endothelial cells via miR‑590‑3p under hypoxic conditions. Mol. Med. Rep. 21, 2560–2570 (2020).

PubMed  PubMed Central  CAS  Google Scholar 

Bian, W. et al. Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis. Aging 12, 6385–6400 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Soghli, N., Yousefi, T., Abolghasemi, M. & Qujeq, D. NORAD, a critical long non-coding RNA in human cancers. Life Sci. 264, 118665 (2021).

Article  PubMed  CAS  Google Scholar 

Matheny, T., Van Treeck, B., Huynh, T. N. & Parker, R. RNA partitioning into stress granules is based on the summation of multiple interactions. RNA https://doi.org/10.1261/rna.078204.120 (2020).

Article  PubMed  Google Scholar 

Elguindy, M. M. & Mendell, J. T. NORAD-induced Pumilio phase separation is required for genome stability. Nature https://doi.org/10.1038/s41586-021-03633-w (2021).

Article  PubMed  PubMed Central  Google Scholar 

Bohn, J. A. et al. Identification of diverse target RNAs that are functionally regulated by human Pumilio proteins. Nucleic Acids Res. 46, 362–386 (2018).

Article  PubMed  CAS  Google Scholar 

Zuckerman, B., Ron, M., Mikl, M., Segal, E. & Ulitsky, I. Gene architecture and sequence composition underpin selective dependency of nuclear export of long RNAs on NXF1 and the TREX complex. Mol. Cell https://doi.org/10.1016/j.molcel.2020.05.013 (2020).

Article  PubMed  Google Scholar 

Thomas, A. et al. RBM33 directs the nuclear export of transcripts containing GC-rich elements. Genes Dev. 36, 550–565 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tichon, A., Perry, R. B.-T., Stojic, L. & Ulitsky, I. SAM68 is required for regulation of Pumilio by the NORAD long noncoding RNA. Genes Dev. 32, 70–78 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu, F., Somarowthu, S. & Pyle, A. M. Visualizing the secondary and tertiary architectural domains of lncRNA RepA. Nat. Chem. Biol. 13, 282–289 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Novikova, I. V., Hennelly, S. P. & Sanbonmatsu, K. Y. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res. 40, 5034–5051 (2012).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Somarowthu, S. et al. HOTAIR forms an intricate and modular secondary structure. Mol. Cell 58, 353–361 (2015).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hawkes, E. J. et al. COOLAIR antisense RNAs form evolutionarily conserved elaborate secondary structures. Cell Rep. 16, 3087–3096 (2016).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lin, Y., Schmidt, B. F., Bruchez, M. P. & McManus, C. J. Structural analyses of NEAT1 lncRNAs suggest long-range RNA interactions that may contribute to paraspeckle architecture. Nucleic Acids Res. 46, 3742–3752 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xue, Z. et al. A G-rich motif in the lncRNA Braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol. Cell 64, 37–50 (2016).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chillón, I. & Pyle, A. M. Inverted repeat Alu elements in the human lincRNA-p21 adopt a conserved secondary structure that regulates RNA function. Nucleic Acids Res. 44, 9462–9471 (2016).

PubMed  PubMed Central  Google Scholar 

Fang, R., Moss, W. N., Rutenberg-Schoenberg, M. & Simon, M. D. Probing Xist RNA structure in cells using targeted structure-seq. PLoS Genet. 11, e1005668 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Smola, M. J. et al. SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. Proc. Natl Acad. Sci. USA 113, 10322–10327 (2016).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li, H. & Aviran, S. Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes. Nat. Commun. 9, 606 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Morandi, E. et al. Genome-scale deconvolution of RNA structure ensembles. Nat. Methods 18, 249–252 (2021).

Article  PubMed  CAS  Google Scholar 

Tomezsko, P. J. et al. Determination of RNA structural diversity and its role in HIV-1 RNA splicing. Nature 582, 438–442 (2020).

Article 

留言 (0)

沒有登入
gif