Fetal and obstetrics manifestations of mitochondrial diseases

Brunetti D, Dykstra W, Le S, Zink A, Prigione A. Mitochondria in neurogenesis: implications for mitochondrial diseases. Stem Cells. 2021;39:1289–97.

Article  PubMed  Google Scholar 

Madan S, Uttekar B, Chowdhary S, Rikhy R. Mitochondria Lead the Way: Mitochondrial Dynamics and Function in Cellular Movements in Development and Disease. Front Cell Dev Biol [Internet]. 2022 [cited 2024 Jul 29];9. https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/https://doi.org/10.3389/fcell.2021.781933/full

Khacho M, Harris R, Slack RS. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat Rev Neurosci [Internet]. 2019 [cited 2024 Jun 3];20:34–48. https://www.nature.com/articles/s41583-018-0091-3

Burr SP, Klimm F, Glynos A, Prater M, Sendon P, Nash P et al. Cell lineage-specific mitochondrial resilience during mammalian organogenesis. Cell [Internet]. 2023 [cited 2024 Jul 29];186:1212–1229.e21. https://www.cell.com/cell/abstract/S0092-8674(23)00093-4

Lv J, Yi Y, Qi Y, Yan C, Jin W, Meng L et al. Mitochondrial homeostasis regulates definitive endoderm differentiation of human pluripotent stem cells. Cell Death Discov [Internet]. 2022 [cited 2024 Jul 29];8:1–13. https://www.nature.com/articles/s41420-022-00867-z

Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77:753–9.

Article  PubMed  PubMed Central  Google Scholar 

Niyazov DM, Kahler SG, Frye RE. Primary Mitochondrial Disease and Secondary Mitochondrial Dysfunction: Importance of Distinction for Diagnosis and Treatment. Mol Syndromol [Internet]. 2016 [cited 2024 Jul 29];7:122–37. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988248/

Poulton J, Finsterer J, Yu-Wai-Man P. Genetic counselling for maternally inherited mitochondrial disorders. Mol Diagn Ther. 2017;21:419–29.

Article  PubMed  Google Scholar 

Bugiardini E, Bottani E, Marchet S, Poole OV, Beninca C, Horga A, et al. Expanding the molecular and phenotypic spectrum of truncating MT-ATP6 mutations. Neurol Genet. 2020;6:e381.

Article  PubMed  PubMed Central  Google Scholar 

Lopez-Gallardo E, Solano A, Herrero-Martin MD, Martinez-Romero I, Castano-Perez MD, Andreu AL, et al. NARP syndrome in a patient harbouring an insertion in the MT-ATP6 gene that results in a truncated protein. J Med Genet. 2008;46:64–7.

Article  Google Scholar 

Pitceathly RDS, Murphy SM, Cottenie E, Chalasani A, Sweeney MG, Woodward C, et al. Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-tooth disease. Neurology. 2012;79:1145–54.

Article  PubMed  PubMed Central  Google Scholar 

Rahman S. Leigh syndrome. Handb Clin Neurol. 2023;194:43–63.

Article  PubMed  Google Scholar 

Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:16080.

Article  PubMed  Google Scholar 

Rahman S. Mitochondrial disease in children. J Intern Med. 2020;287:609–33.

Article  PubMed  Google Scholar 

Davis RL, Liang C, Sue CM. Mitochondrial diseases. Handb Clin Neurol. 2018;147:125–41.

Article  PubMed  Google Scholar 

Ghezzi D, Arzuffi P, Zordan M, Da Re C, Lamperti C, Benna C, et al. Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nat Genet. 2011;43:259–63.

Article  PubMed  Google Scholar 

Garone C, Taylor RW, Nascimento A, Poulton J, Fratter C, Domínguez-González C, et al. Retrospective natural history of thymidine kinase 2 deficiency. J Med Genet. 2018;55:515–21.

Article  PubMed  Google Scholar 

Moraes CT, DiMauro S, Zeviani M, Lombes A, Shanske S, Miranda AF, et al. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Med. 1989;320:1293–9.

Article  PubMed  Google Scholar 

Pearson HA, Lobel JS, Kocoshis SA, Naiman JL, Windmiller J, Lammi AT, et al. A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic dysfunction. J Pediatr. 1979;95:976–84.

Article  PubMed  Google Scholar 

Baerlocher KE, Feldges A, Weissert M, Simonsz HJ, Rötig A. Mitochondrial DNA deletion in an 8-year-old boy with Pearson syndrome. J Inherit Metab Dis. 1992;15:327–30.

Article  PubMed  Google Scholar 

Carelli V, Achilli A, Valentino ML, Rengo C, Semino O, Pala M, et al. Haplogroup effects and recombination of mitochondrial DNA: novel clues from the analysis of Leber hereditary optic neuropathy pedigrees. Am J Hum Genet. 2006;78:564–74.

Article  PubMed  PubMed Central  Google Scholar 

Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. Inherited mitochondrial optic neuropathies. J Med Genet. 2009;46:145–58.

Article  PubMed  Google Scholar 

Mavraki E, Labrum R, Sergeant K, Alston CL, Woodward C, Smith C et al. Genetic testing for mitochondrial disease: the United Kingdom best practice guidelines. Eur J Hum Genet [Internet]. 2023 [cited 2024 Jul 29];31:148–63. https://www.nature.com/articles/s41431-022-01249-w

Mitochondrial Diseases Working Group. – European Reference Network – EURO-NMD [Internet]. [cited 2024 Jul 29]. https://ern-euro-nmd.eu/group-of-people/mitochondrial-diseases/

Mancuso M, Papadopoulou MT, Ng YS, Ardissone A, Bellusci M, Bertini E et al. Management of seizures in patients with primary mitochondrial diseases: consensus statement from the InterERNs Mitochondrial Working Group. European Journal of Neurology [Internet]. 2024 [cited 2024 Jul 29];31:e16275. https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1111/ene.16275

Poulton J, Steffann J, Burgstaller J, McFarland R. 243rd ENMC international workshop: Developing guidelines for management of reproductive options for families with maternally inherited mtDNA disease, Amsterdam, the Netherlands, 22–24 March 2019. Neuromuscular Disorders [Internet]. 2019 [cited 2024 Jul 29];29:725–33. https://www.nmd-journal.com/article/S0960-8966(19)31080-6/fulltext

Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: One-Size-Fits-All and Precision Medicine Strategies. Pharmaceutics [Internet]. 2020 [cited 2024 Jul 8];12:1083. https://www.mdpi.com/1999-4923/12/11/1083

Garbern JC, Lee RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Research & Therapy [Internet]. 2021 [cited 2024 Apr 20];12:177. https://doi.org/10.1186/s13287-021-02252-6

Grilo LF, Tocantins C, Diniz MS, Gomes RM, Oliveira PJ, Matafome P, et al. Metabolic Disease Programming: from Mitochondria to epigenetics, glucocorticoid Signalling and Beyond. Eur J Clin Invest. 2021;51:e13625.

Article  PubMed  Google Scholar 

Holme AM, Roland MCP, Lorentzen B, Michelsen TM, Henriksen T. Placental Glucose Transfer: A Human In Vivo Study. Vatish M, editor. PLoS ONE. 2015;10:e0117084.

Jauniaux E, Watson A, Burton G. Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks’ gestation. Am J Obstet Gynecol. 2001;184:998–1003.

Article  PubMed  Google Scholar 

Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol. 2000;157:2111–22.

Article  PubMed  PubMed Central  Google Scholar 

Minai L, Martinovic J, Chretien D, Dumez F, Razavi F, Munnich A et al. Mitochondrial respiratory chain complex assembly and function during human fetal development. Molecular Genetics and Metabolism [Internet]. 2008 [cited 2024 Apr 20];94:120–6. https://linkinghub.elsevier.com/retrieve/pii/S1096719207006415

Papa S. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim Biophys Acta. 1996;1276:87–105.

Article  PubMed  Google Scholar 

Kim K, Lecordier A, Bowman LH. Both nuclear and mitochondrial cytochrome c oxidase mRNA levels increase dramatically during mouse postnatal development. Biochem J [Internet]. 1995 [cited 2024 Apr 22];306:353–8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1136528/

Izquierdo JM, Luis AM, Cuezva JM. Postnatal mitochondrial differentiation in rat liver. Regulation by thyroid hormones of the beta-subunit of the mitochondrial F1-ATPase complex. Journal of Biological Chemistry [Internet]. 1990 [cited 2024 Apr 22];265:9090–7. https://www.sciencedirect.com/science/article/pii/S0021925819388167

Fisher JJ, Bartho LA, Perkins AV, Holland OJ. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy. Clin Exp Pharmacol Physiol. 2020;47:176–84.

Article  PubMed  Google Scholar 

Fajersztajn L, Veras MM. Hypoxia: from placental development to fetal programming. Birth Defects Res. 2017;109:1377–85.

Article  PubMed  Google Scholar 

Santos TA, El Shourbagy S, St John JC. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril. 2006;85:584–91.

Article  PubMed  Google Scholar 

Kim K, Kenigsberg S, Jurisicova A, Bentov Y. The Role of Mitochondria in Oocyte and Early Embryo Health. OBM Genetics [Internet]. 2019 [cited 2024 Apr 26];3:1–36. https://www.lidsen.com/journals/genetics/genetics-03-01-070

Arrázola MS, Andraini T, Szelechowski M, Mouledous L, Arnauné-Pelloquin L, Davezac N, et al. Mitochondria in Developmental and Adult Neurogenesis. Neurotox Res. 2019;36:257–67.

Article  PubMed  Google Scholar 

Bifari F, Dolci S, Bottani E, Pino A, Di Chio M, Zorzin S et al. Complete neural stem cell (NSC) neuronal differentiation requires a branched chain amino acids-induced persistent metabolic shift towards energy metabolism. Pharmacological Research [Internet]. 2020 [cited 2024 Apr 26];158:104863. https://linkinghub.elsevier.com/retrieve/pii/S1043661820311713

Lorenz C, Prigione A. Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling. Current Opinion in Cell Biology [Internet]. 2017 [cited 2024 Mar 1];49:71–6. https://www.sciencedirect.com/science/article/pii/S0955067417301461

Inak G, Rybak-Wolf A, Lisowski P, Pentimalli TM, Jüttner R, Glažar P et al. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nat Commun [Internet]. 2021 [cited 2021 Nov 18];12:1929. https://www.nature.com/articles/s41467-021-22117-z

Vega RB, Horton JL, Kelly DP. Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circ Res. 2015;116:1820–34.

Article  PubMed  PubMed Central  Google Scholar 

Knobloch M, Jessberger S. Metabolism and neurogenesis. Curr Opin Neurobiol. 2017;42:45–52.

Article  PubMed  Google Scholar 

Ciarpella F, Zamfir RG, Campanelli A, Ren E, Pedrotti G, Bottani E, et al. Murine cerebral organoids develop network of functional neurons and hippocampal brain region identity. iScience. 2021;24:103438.

Article 

留言 (0)

沒有登入
gif