A comprehensive evaluation of dermal fibroblast therapy in clinical trials for treating skin disorders and cosmetic applications: a scoping review

Adnan M, Akhter MH, Afzal O, Altamimi ASA, Ahmad I, Alossaimi MA, Jaremko M, Emwas A-H, Haider T, Haider MF. Exploring nanocarriers as treatment modalities for skin Cancer. Molecules. 2023;28. https://doi.org/10.3390/molecules28155905

Ascensión AM, Fuertes-Álvarez S, Ibañez-Solé O, Izeta A, Araúzo-Bravo MJ. Human dermal fibroblast subpopulations are conserved across single-cell RNA sequencing studies. J Invest Dermatology. 2021;141:1735–e174435. https://doi.org/10.1016/j.jid.2020.11.028

Article  CAS  Google Scholar 

Zou ML, Teng YY, Wu JJ, Liu SY, Tang XY, Jia Y, Chen ZH, Zhang KW, Sun ZL, Li X, Ye JX, Xu RS, Yuan FL. Fibroblasts: Heterogeneous Cells With Potential in Regenerative Therapy for Scarless Wound Healing, Frontiers in Cell and Developmental Biology. 9 (2021) 713605. https://doi.org/10.3389/FCELL.2021.713605/BIBTEX

Lynch MD, Watt FM. Fibroblast heterogeneity: implications for human disease. J Clin Investig. 2018;128:26–35.

Article  PubMed  PubMed Central  Google Scholar 

Yan WF, Murrell DF. Fibroblast-based cell therapy strategy for recessive dystrophic epidermolysis bullosa. Dermatol Clin. 2010;28:367–70.

Article  CAS  PubMed  Google Scholar 

Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, Driskell RR, Rosenthal N, Biernaskie J, Horsley V. Fibroblasts: Origins, definitions, and functions in health and disease, Cell. 184 (2021) 3852–3872. https://doi.org/10.1016/j.cell.2021.06.024

Agorku DJ, Langhammer A, Heider U, Wild S, Bosio A, Hardt O. CD49b, CD87, and CD95 are markers for activated Cancer-Associated fibroblasts whereas CD39 marks quiescent normal fibroblasts in murine tumor models. Front Oncol. 2019;9. https://doi.org/10.3389/FONC.2019.00716

Ivey MJ, Tallquist MD. Defining the Cardiac Fibroblast. Circ J. 2016;80:2269–76. https://doi.org/10.1253/CIRCJ.CJ-16-1003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sober SA, Darmani H, Alhattab D, Awidi A. Flow cytometric characterization of cell surface markers to differentiate between fibroblasts and mesenchymal stem cells of different origin. Archives Med Sci. 2023;19:1487–96. https://doi.org/10.5114/aoms/131088

Article  CAS  Google Scholar 

Muhl L, Genové G, Leptidis S, Liu J, He L, Mocci G, Sun Y, Gustafsson S, Buyandelger B, Chivukula IV. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat Commun. 2020;11:3953.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell. 2022;29:1161–80. https://doi.org/10.1016/j.stem.2022.07.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mascharak S, Longaker MT. Fibroblast heterogeneity in wound healing: hurdles to clinical translation. Trends Mol Med. 2020;26:1101–6.

Article  CAS  PubMed  Google Scholar 

Ganier C, Rognoni E, Goss G, Lynch M, Watt F.M. Fibroblast heterogeneity in healthy and wounded skin. Cold Spring Harb Perspect Biol. 2022;a041238. https://doi.org/10.1101/cshperspect.a041238

Morimoto N, Ito T, Takemoto S, Katakami M, Kanda N, Tada H, Tanaka S, Teramukai S, Kawai K, Nakamura Y, Kasai Y, Masayuki Y, Maekawa T, Shimizu A, Suzuki S. An exploratory clinical study on the safety and efficacy of an autologous fibroblast-seeded artificial skin cultured with animal product-free medium in patients with diabetic foot ulcers. Int Wound J. 2014;11:183–9. https://doi.org/10.1111/j.1742-481X.2012.01064.x

Article  PubMed  Google Scholar 

Han SK, Choi KJ, Kim WK. Clinical application of fresh fibroblast allografts for the treatment of diabetic foot ulcers: a pilot study, Plastic and reconstructive surgery. 114 (2004) 1783–9. https://doi.org/10.1097/01.PRS.0000142415.57470.DF

Hasegawa T, Suga Y, Mizoguchi M, Muramatsu S, Mizuno Y, Ogawa H, Kubo K, Kuroyanagi Y. An allogeneic cultured dermal substitute suitable for treating intractable skin ulcers and large skin defects prior to autologous skin grafting: three case reports. J Dermatol. 2005;32:715–20. https://doi.org/10.1111/J.1346-8138.2005.TB00831.X

Article  PubMed  Google Scholar 

Yamanaka S, Takahashi K, Okita K, Nakagawa M. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007;2:3081–9. https://doi.org/10.1038/NPROT.2007.418

Article  PubMed  Google Scholar 

Castro-Viñuelas R, Sanjurjo-Rodríguez C, Piñeiro-Ramil M, Hermida-Gómez T, Rodríguez-Fernández S, Oreiro N, de Toro J, Fuentes I, Blanco FJ. Díaz-Prado, Generation and characterization of human induced pluripotent stem cells (iPSCs) from hand osteoarthritis patient-derived fibroblasts. Sci Rep 2020. 2020;10:1. https://doi.org/10.1038/s41598-020-61071-6

Article  CAS  Google Scholar 

Golchin A, Shams F, Kangari P, Azari A, Hosseinzadeh S. Regenerative Medicine: Injectable Cell-Based Therapeutics and Approved Products, n.d. https://doi.org/10.1007/5584_2019_412

Golchin A, Rekabgardan M, Taheri RA, Nourani MR. Promotion of Cell-based therapy: special focus on the Cooperation of Mesenchymal Stem Cell Therapy and Gene Therapy for Clinical Trial Studies. in: Turksen K, editor, Advances in Experimental Medicine and Biology. New York, NY: Springer; 2018. pp. 103–18. https://doi.org/10.1007/5584_2018_256

Chapter  Google Scholar 

Golchin A, T.Z.T.Z.T.Z.T Z, Farahany. Biological products: Cellular Therapy and FDA approved products. Stem Cell Reviews Rep. 2019;15:1–10. https://doi.org/10.1007/s12015-018-9866-1

Article  Google Scholar 

FrykbergRobert G. Challenges in the treatment of chronic wounds, Advances in Wound Care. (2015).

Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, Percoraro RE, Rodeheaver G, Robson MC. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regeneration. 1994;2:165–70.

Article  CAS  PubMed  Google Scholar 

Janowska A, Dini V, Oranges T, Iannone M, Loggini B, Romanelli M. Atypical ulcers: diagnosis and management. Clin Interv Aging (2019) 2137–43.

Martinengo L, Olsson M, Bajpai R, Soljak M, Upton Z, Schmidtchen A, Car J, Järbrink K. Prevalence of chronic wounds in the general population: systematic review and meta-analysis of observational studies. Ann Epidemiol. 2019;29:8–15.

Article  PubMed  Google Scholar 

Shams F, Moravvej H, Hosseinzadeh S, Mostafavi E, Bayat H, Kazemi B, Bandehpour M, Rostami E, Rahimpour A, Moosavian H. Overexpression of VEGF in dermal fibroblast cells accelerates the angiogenesis and wound healing function: in vitro and in vivo studies. Sci Rep. 2022;12:18529.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim S, Kim Y, Hyun Y-S, Choi H, Kim S-Y, Kim T-G. Exosomes from human cord blood plasma accelerate cutaneous wound healing by promoting fibroblast function, angiogenesis, and M2 macrophage differentiation. Biomaterials Sci. 2021;9:3028–39.

Article  CAS  Google Scholar 

Wathoni N, Rusdiana T, Hasanah AN, Muhtadi A, Pratiwi ED, Ripa tulM, Mohammed AFA, Okajima M, Kaneko T, Arima H. Sacran hydrogel film containing keratinocyte growth factor accelerates wound healing by stimulating fibroblast migration and re-epithelization. Chem Pharm Bull. 2019;67:849–54.

Article  CAS  Google Scholar 

Wathoni N, Rusdiana T, Hasanah AN, Pratama AR, Okajima M, Kaneko T, Mohammed AFA, Putera BW, Arima H. Epidermal growth factor in sacran hydrogel film accelerates fibroblast migration. J Adv Pharm Tech Res. 2020;11:74.

Article  CAS  Google Scholar 

Andasari V, Lü D, Swat M, Feng S, Spill F, Chen L, Luo X, Zaman M, Long M. Computational model of wound healing: EGF secreted by fibroblasts promotes delayed re-epithelialization of epithelial keratinocytes. Integr Biology. 2018;10:605–34.

Article  CAS  Google Scholar 

Momeni M, Fallah N, Bajouri A. ScienceDirect A randomized, double-blind, phase I clinical trial of fetal cell-based skin substitutes on healing of donor sites in burn patients. Burns. 2018;45:914–22. https://doi.org/10.1016/j.burns.2018.10.016

Article  PubMed  Google Scholar 

Nilforoushzadeh MA, Kazemikhoo N, Mokmeli S, Zare S, Dahmardehei M, Doost RV, Momeni M, Ansari F. An open-label study of low-level laser therapy followed by autologous fibroblast transplantation for healing grade 3 burn wounds in diabetic patients. J Lasers Med Sci. 2019;10:7–12. https://doi.org/10.15171/jlms.2019.s2

Article  Google Scholar 

Bourne D.A., James I., Wang S., Bliley J., Grahovac T., Mitchell R.T., Brown S.A., Ambrosio F., Ho J., Lannau B., Kemp P.D., Gusenoff J., Rubin J.P. Treatment of burn contractures with allogeneic human dermal fibroblasts improves Vancouver scar scale: a phase I/II trial. J Plast Reconstr Aesthetic Surg. 2021;74:3443–76. https://doi.org/10.1016/j.bjps.2021.08.018

Article  Google Scholar 

Jiang D, Guo R, Machens H-G, Rinkevich Y. Diversity of fibroblasts and their roles in wound healing. Cold Spring Harb Perspect Biol. 2023;15:a041222.

Article  CAS  PubMed  Google Scholar 

Raja JM, Maturana MA, Kayali S, Khouzam A, Efeovbokhan N. Diabetic foot ulcer: a comprehensive review of pathophysiology and management modalities. World J Clin Cases. 2023;11:1684–93. https://doi.org/10.12998/wjcc.v11.i8.1684

Article  PubMed  PubMed Central  Google Scholar 

Prompers L, Huijberts M, Apelqvist J, Jude E, Piaggesi A, Bakker K, Edmonds M, Holstein P, Jirkovska A, Mauricio D. High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. Diabetologia. 2007;50:18–25.

Article  CAS  PubMed  Google Scholar 

Boulton AJM. The diabetic foot—an update. Foot Ankle Surg. 2008;14:120–4.

留言 (0)

沒有登入
gif