MYC upstream region orchestrates resistance to PI3K inhibitors in cancer cells through FOXO3a-mediated autophagic adaptation

Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16:253–64.

Article  PubMed  Google Scholar 

ar-Rushdi A, Nishikura K, Erikson J, Watt R, Rovera G, Croce CM. Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma. Science. 1983;222:390–3.

Article  PubMed  Google Scholar 

Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA. 1982;79:7824–7.

Article  PubMed  PubMed Central  Google Scholar 

Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA. 1982;79:7837–41.

Article  PubMed  PubMed Central  Google Scholar 

Rabbitts TH, Hamlyn PH, Baer R. Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma. Nature. 1983;306:760–5.

Article  PubMed  Google Scholar 

Pelengaris S, Khan M, Evan G. c-MYC: more than just a matter of life and death. Nat Rev Cancer. 2002;2:764–76.

Article  PubMed  Google Scholar 

Lee KS, Kwak Y, Nam KH, Kim DW, Kang SB, Choe G, et al. c-MYC copy-number gain is an independent prognostic factor in patients with colorectal cancer. PLoS One. 2015;10:e0139727.

Article  PubMed  PubMed Central  Google Scholar 

Kakisako K, Miyahara M, Uchino S, Adachi Y, Kitano S. Prognostic significance of c-myc mRNA expression assessed by semi-quantitative RT-PCR in patients with colorectal cancer. Oncol Rep. 1998;5:441–5.

PubMed  Google Scholar 

Bhatavdekar JM, Patel DD, Ghosh N, Chikhlikar PR, Trivedi TI, Suthar TP, et al. Coexpression of Bcl-2, c-Myc, and p53 oncoproteins as prognostic discriminants in patients with colorectal carcinoma. Dis Colon Rectum. 1997;40:785–90.

Article  PubMed  Google Scholar 

Rowley S, Newbold KM, Gearty J, Keighley MR, Donovan IA, Neoptolemos JP. Comparison of deoxyribonucleic acid ploidy and nuclear expressed p62 c-myc oncogene in the prognosis of colorectal cancer. World J Surg. 1990;14:545–50. discussion 551

Article  PubMed  Google Scholar 

Wang C, Zhang J, Yin J, Gan Y, Xu S, Gu Y, et al. Alternative approaches to target Myc for cancer treatment. Sig Transduct Target Ther. 2021;6:1–14.

Google Scholar 

Struntz NB, Chen A, Deutzmann A, Wilson RM, Stefan E, Evans HL, et al. Stabilization of the max homodimer with a small molecule attenuates Myc-driven transcription. Cell Chem Biol. 2019;26:711–23.e14.

Article  PubMed  Google Scholar 

Llombart V, Mansour MR. Therapeutic targeting of “undruggable” MYC. EBioMedicine 2021;75:103756.

Article  PubMed  PubMed Central  Google Scholar 

Whitfield JR, Beaulieu ME, Soucek L. Strategies to inhibit Myc and their clinical applicability. Front Cell Dev Biol [Internet]. 2017;5. [cited 2024 Feb 17]. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2017.00010

De Benedetti A, Graff JR. eIF-4E expression and its role in malignancies and metastases. Oncogene. 2004;23:3189–99.

Article  PubMed  Google Scholar 

Shi Y, Sharma A, Wu H, Lichtenstein A, Gera J. Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway*. J Biol Chem. 2005;280:10964–73.

Article  PubMed  Google Scholar 

Nanbru C, Lafon I, Audigier S, Gensac MC, Vagner S, Huez G, et al. Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J Biol Chem. 1997;272:32061–6.

Article  PubMed  Google Scholar 

Stoneley M, Paulin FE, Quesne JPL, Chappell SA, Willis AE. C-Myc 5′ untranslated region contains an internal ribosome entry segment. Oncogene. 1998;16:423–8.

Article  PubMed  Google Scholar 

Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol. 2013;5:a012351.

Article  PubMed  PubMed Central  Google Scholar 

Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988;334:320–5.

Article  PubMed  Google Scholar 

Jang SK, Kräusslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E. A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol. 1988;62:2636–43.

Article  PubMed  PubMed Central  Google Scholar 

Komar AA, Hatzoglou M. Cellular IRES-mediated translation. Cell Cycle. 2011;10:229–40.

Article  PubMed  PubMed Central  Google Scholar 

Subkhankulova T, Mitchell SA, Willis AE. Internal ribosome entry segment-mediated initiation of c-Myc protein synthesis following genotoxic stress. Biochem J. 2001;359:183–92.

Article  PubMed  PubMed Central  Google Scholar 

Stoneley M, Chappell SA, Jopling CL, Dickens M, MacFarlane M, Willis AE. c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol Cell Biol. 2000;20:1162–9.

Article  PubMed  PubMed Central  Google Scholar 

Yeh DW, Zhao X, Siddique HR, Zheng M, Choi HY, Machida T, et al. MSI2 promotes translation of multiple IRES-containing oncogenes and virus to induce self-renewal of tumor initiating stem-like cells. Cell Death Discov. 2023;9:1–15.

Article  Google Scholar 

Grentzmann G, Ingram JA, Kelly PJ, Gesteland RF, Atkins JF. A dual-luciferase reporter system for studying recoding signals. RNA. 1998;4:479–86.

PubMed  PubMed Central  Google Scholar 

Kozak M. New Ways of Initiating Translation in Eukaryotes? Mol Cell Biol. 2001;21:1899–907.

Article  PubMed  PubMed Central  Google Scholar 

Hellen CUT, Sarnow P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 2001;15:1593–612.

Article  PubMed  Google Scholar 

Bert AG, Grépin R, Vadas MA, Goodall GJ. Assessing IRES activity in the HIF-1α and other cellular 5′ UTRs. RNA. 2006;12:1074–83.

Article  PubMed  PubMed Central  Google Scholar 

Baranick BT, Lemp NA, Nagashima J, Hiraoka K, Kasahara N, Logg CR. Splicing mediates the activity of four putative cellular internal ribosome entry sites. Proc Natl Acad Sci USA. 2008;105:4733–8.

Article  PubMed  PubMed Central  Google Scholar 

Wang Z, Weaver M, Magnuson NS. Cryptic promoter activity in the DNA sequence corresponding to the pim-1 5’-UTR. Nucleic Acids Res. 2005;33:2248–58.

Article  PubMed  PubMed Central  Google Scholar 

Van Eden ME, Byrd MP, Sherrill KW, Lloyd RE. Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA. 2004;10:720–30.

Article  PubMed  Google Scholar 

Shi Y, Yang Y, Hoang B, Bardeleben C, Holmes B, Gera J, et al. Therapeutic potential of targeting IRES-dependent c-myc translation in multiple myeloma cells during ER stress. Oncogene. 2016;35:1015–24.

Article  PubMed  Google Scholar 

Denk S, Schmidt S, Schurr Y, Schwarz G, Schote F, Diefenbacher M, et al. CIP2A regulates MYC translation (via its 5′UTR) in colorectal cancer. Int J Colorectal Dis. 2021;36:911–8.

Article  PubMed  Google Scholar 

Martinez-Useros J, Garcia-Carbonero N, Li W, Fernandez-Aceñero MJ, Cristobal I, Rincon R, et al. UNR/CSDE1 expression is critical to maintain invasive phenotype of colorectal cancer through regulation of c-MYC and epithelial-to-mesenchymal transition. J Clin Med. 2019;8:560.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif