Vocalization-induced middle ear muscle reflex and auditory fovea do not contribute to the unimpaired auditory sensitivity after intense noise exposure in the CF-FM bat, Hipposideros pratti

Boero LE, Castagna VC, Di Guilmi MN, Goutman JD, Elgoyhen AB, Gómez-Casati ME (2018) Enhancement of the medial olivocochlear system prevents hidden hearing loss. J Neurosci 38:7440–7451. https://doi.org/10.1523/JNEUROSCI.0363-18.2018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boero LE, Castagna VC, Terreros G, Moglie MJ, Silva S, Maass JC, Fuchs PA, Delano PH, Elgoyhen AB, Gómez-Casati ME (2020) Preventing presbycusis in mice with enhanced medial olivocochlear feedback. Proc Natl Acad Sci U S A 117:11811–11819. https://doi.org/10.1073/pnas.2000760117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bohn KM, Boughman JW, Wilkinson GS, Moss CF (2004) Auditory sensitivity and frequency selectivity in greater spear-nosed bats suggest specializations for acoustic communication. J Comp Physiol Neuroethol Sens Neural Behav Physiol 190:185–192. https://doi.org/10.1007/s00359-003-0485-0

Article  CAS  Google Scholar 

Borg E, Counter SA (1989) The middle-ear muscles. Sci Am 261:74–80. https://doi.org/10.1038/scientificamerican0889-74

Article  CAS  PubMed  Google Scholar 

Charlton PE, Schatz KC, Burke K, Paul MJ, Dent ML (2019) Sex differences in auditory brainstem response audiograms from vasopressin-deficient Brattleboro and wild-type Long-Evans rats. PLoS ONE 14:e0222096. https://doi.org/10.1371/journal.pone.0222096

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaverri G, Ancillotto L, Russo D (2018) Social communication in bats. Biol Rev Camb Philos Soc 93:1938–1954. https://doi.org/10.1111/brv.12427

Article  PubMed  Google Scholar 

Cui ZD, Zhang GM, Zhou DD, Wu J, Liu L, Tang J, Chen QC, Fu ZY (2021) The second harmonic neurons in auditory midbrain of Hipposideros pratti are more tolerant to background white noise. Hear Res 400:108142. https://doi.org/10.1016/j.heares.2020.108142

Article  PubMed  Google Scholar 

Del Fernández IS, Carmona-Barrón VG, Diaz I, Plaza I, Alvarado JC, Merchán MA (2024) Multisession anodal epidural direct current stimulation of the auditory cortex delays the progression of presbycusis in the Wistar rat. Hear Res 444:108969. https://doi.org/10.1016/j.heares.2024.108969

Article  Google Scholar 

Elgueda D, Delano PH (2020) Corticofugal modulation of audition. Curr Opin Physiol 18:73–78. https://doi.org/10.1016/j.cophys.2020.08.01

Article  Google Scholar 

Hom KN, Linnenschmidt M, Simmons JA, Simmons AM (2016) Echolocation behavior in big brown bats is not impaired after intense broadband noise exposures. J Exp Biol 219:3253–3260. https://doi.org/10.1242/jeb.143578

Article  PubMed  Google Scholar 

Jen PH, Suga N (1976) Coordinated activities of middle-ear and laryngeal muscles in echolocating bats. Science 191:950–952. https://doi.org/10.1126/science.1251206

Article  CAS  PubMed  Google Scholar 

Jiang S, Sanders S, Gan RZ (2023) Hearing protection and damage mitigation in Chinchillas exposed to repeated low-intensity blasts. Hear Res 429:108703. https://doi.org/10.1016/j.heares.2023.108703

Article  PubMed  Google Scholar 

Jones G (1999) Scaling of echolocation call parameters in bats. J Exp Biol 202:3359–3367. https://doi.org/10.1242/jeb.202.23.3359

Article  CAS  PubMed  Google Scholar 

Kössl M, Vater M (2000) Consequences of outer hair cell damage for otoacoustic emissions and audio-vocal feedback in the mustached bat. J Assoc Res Otolaryngol 1:300–314. https://doi.org/10.1007/s101620010046

Article  PubMed  PubMed Central  Google Scholar 

Lattenkamp EZ, Nagy M, Drexl M, Vernes SC, Wiegrebe L, Knörnschild M (2021) Hearing sensitivity and amplitude coding in bats are differentially shaped by echolocation calls and social calls. Proc Biol Sci 288:20202600. https://doi.org/10.1098/rspb.2020.2600

Article  PubMed  PubMed Central  Google Scholar 

Lauer AM, Jimenez SV, Delano PH (2022) Olivocochlear efferent effects on perception and behavior. Hear Res 419:108207. https://doi.org/10.1016/j.heares.2021.108207

Article  PubMed  Google Scholar 

Li L, Liu X, Chen GD, Salvi R (2021) Temporal characteristics of the cochlear response after noise exposure. Hear Res 404:108208. https://doi.org/10.1016/j.heares.2021.108208

Article  PubMed  Google Scholar 

Liu WR, Shen JX, Zhang YJ, Xu ZM, Qi Z, Xue MQ (2014) Auditory sexual difference in the large odorous frog Odorrana graminea. J Comp Physiol Neuroethol Sens Neural Behav Physiol 200:311–316. https://doi.org/10.1007/s00359-014-0885-3

Article  CAS  Google Scholar 

Liu Z, Chen P, Li YY, Li MW, Liu Q, Pan WL, Xu DM, Bai J, Zhang LB, Tang J, Shi P (2021) Cochlear hair cells of echolocating bats are immune to intense noise. J Genet Genomics 48:984–993. https://doi.org/10.1016/j.jgg.2021.06.007

Article  CAS  PubMed  Google Scholar 

Liu J, Antisdel J, Liu C, Chen M, Dong P, Fahlman R, Ma F, Yu Y (2022) Extensive hearing loss induced by low-frequency noise exposure. Laryngoscope Investig Otolaryngol 7:564–570. https://doi.org/10.1002/lio2.752

Article  PubMed  PubMed Central  Google Scholar 

Long GR, Schnitzler HU (1975) Behavioural audiograms from the bat, Rhinolophus ferrumequinum. J Comp Physiol 100:211–219. https://doi.org/10.1007/BF00238345

Article  Google Scholar 

Maison SF, Liberman MC (2000) Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J Neurosci 20:4701–4707. https://doi.org/10.1523/JNEUROSCI.20-12-04701.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mason MJ, Lin CC, Narins PM (2003) Sex differences in the middle ear of the bullfrog (Rana catesbeiana). Brain Behav Evol 61:91–101. https://doi.org/10.1159/000069354

Article  CAS  PubMed  Google Scholar 

Mooney TA, Nachtigall PE, Breese M, Vlachos S, Au WW (2009) Predicting temporary threshold shifts in a bottlenose dolphin (Tursiops truncatus): the effects of noise level and duration. J Acoust Soc Am 125:1816–1826. https://doi.org/10.1121/1.3068456

Article  PubMed  Google Scholar 

Mukerji S, Windsor AM, Lee DJ (2010) Auditory brainstem circuits that mediate the middle ear muscle reflex. Trends Amplif 14:170–191. https://doi.org/10.1177/1084713810381771

Article  PubMed  PubMed Central  Google Scholar 

Nachtigall PE, Supin A, Pawloski J, Au WW (2004) Temporary threshold shifts after noise exposure in the bottlenose dolphin (Tursiops truncatus) measured using evoked auditory potentials. Mar Mammal Sci 20:673–687. https://doi.org/10.1121/1.4788211

Article  Google Scholar 

Park CR, Willott JF, Walton JP (2024) Age-related changes of auditory sensitivity across the life span of CBA/CaJ mice. Hear Res 441:108921. https://doi.org/10.1016/j.heares.2023.108921

Article  PubMed  Google Scholar 

Pollak GD, Henson OW (1973) Specialized functional aspects of the middle ear muscles in the bat, Chilonycteris parnellii. J Comp Physiol 84:167–174. https://doi.org/10.1007/BF00697604

Article  Google Scholar 

Pollak G, Henson OW Jr, Novick A (1972) Cochlear microphonic audiograms in the ‘‘pure’’ tone bat, Chilonycteris parnellii. Science 176:66–68. https://doi.org/10.1126/science.176.4030.66

Article  CAS  PubMed  Google Scholar 

Rubel EW, Furrer SA, Stone JS (2013) A brief history of hair cell regeneration research and speculations on the future. Hear Res 297:42–51. https://doi.org/10.1016/j.heares.2012.12.014

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif