Partners in health and disease: pineal gland and purinergic signalling

Wilmes M, Pinto Espinoza C, Ludewig P et al (2022) Blocking P2X7 by intracerebroventricular injection of P2X7-specific nanobodies reduces stroke lesions. J Neuroinflammation 19:256. https://doi.org/10.1186/s12974-022-02601-z

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rodrigues RJ, Tomé AR, Cunha RA (2015) ATP as a multi-target danger signal in the brain. Front Neurosci 9:148. https://doi.org/10.3389/fnins.2015.00148

Article  PubMed  PubMed Central  Google Scholar 

Pelegrin P (2021) P2X7 receptor and the NLRP3 inflammasome: partners in crime. Biochem Pharmacol 187:114385. https://doi.org/10.1016/j.bcp.2020.114385

Article  PubMed  CAS  Google Scholar 

De Freitas PHM, Da Silva Ferreira NC, Fioravante-Rezende JG et al (2019) Dispelling myths about connexins, pannexins and P2X7 in hypoxic-ischemic central nervous system. Neurosci Lett 695:76–85. https://doi.org/10.1016/j.neulet.2017.11.044

Article  PubMed  CAS  Google Scholar 

Illes P (2020) P2X7 receptors amplify CNS damage in neurodegenerative diseases. Int J Mol Sci 21:5996. https://doi.org/10.3390/ijms21175996

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu S, Levine SR, Winn HR (2010) Targeting ischemic penumbra part I: from pathophysiology to therapeutic strategy. J Exp Stroke Transl Med 3:47–55. https://doi.org/10.6030/1939-067X-3.1.47

Article  PubMed  PubMed Central  Google Scholar 

Di Virgilio F (2005) Purinergic mechanism in the immune system: a signal of danger for dendritic cells. Purinergic Signal 1:205. https://doi.org/10.1007/s11302-005-6312-z

Article  PubMed  PubMed Central  Google Scholar 

Kanellopoulos JM, Delarasse C (2019) Pleiotropic roles of P2X7 in the central nervous system. Front Cell Neurosci 13:401. https://doi.org/10.3389/fncel.2019.00401

Article  PubMed  PubMed Central  CAS  Google Scholar 

Di Virgilio F (2007) Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol Sci 28:465–472. https://doi.org/10.1016/j.tips.2007.07.002

Article  PubMed  CAS  Google Scholar 

Oliveira-Giacomelli Á, Petiz LL, Andrejew R et al (2021) Role of P2X7 Receptors in immune responses during neurodegeneration. Front Cell Neurosci 15:662935. https://doi.org/10.3389/fncel.2021.662935

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu X, Zhao Z, Ji R et al (2017) Inhibition of P2X7 receptors improves outcomes after traumatic brain injury in rats. Purinergic Signal 13:529–544. https://doi.org/10.1007/s11302-017-9579-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Di Virgilio F, Vultaggio-Poma V, Falzoni S, Giuliani AL (2023) The coming of age of the P2X7 receptor in diagnostic medicine. Int J Mol Sci 24:9465. https://doi.org/10.3390/ijms24119465

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sousa KS, Quiles CL, Muxel SM et al (2022) Brain damage-linked ATP promotes P2X7 receptors mediated pineal N-acetylserotonin release. Neuroscience 499:12–22. https://doi.org/10.1016/j.neuroscience.2022.06.039

Article  PubMed  CAS  Google Scholar 

Carvalho-Sousa CE, da Silveira C-M, Tamura EK et al (2011) Molecular basis for defining the pineal gland and pinealocytes as targets for tumor necrosis factor. Front Endocrinol 2:10. https://doi.org/10.3389/fendo.2011.00010

Article  CAS  Google Scholar 

Skinner DC, Malpaux B (1999) High melatonin concentrations in third ventricular cerebrospinal fluid are not due to galen vein blood recirculating through the choroid plexus1. Endocrinology 140:4399–4405. https://doi.org/10.1210/endo.140.10.7074

Article  PubMed  CAS  Google Scholar 

Duvernoy HM, Parratte B, Tatu L, Vuillier F (2000) The human pineal gland: relationships with surrounding structures and blood supply. Neurol Res 22:747–790. https://doi.org/10.1080/01616412.2000.11740753

Article  PubMed  CAS  Google Scholar 

Da Silveira C-M, Carvalho-Sousa CE, Tamura EK et al (2010) TLR4 and CD14 receptors expressed in rat pineal gland trigger NFKB pathway: LPS triggers pineal gland NFKB. J Pineal Res no-no. https://doi.org/10.1111/j.1600-079X.2010.00785.x

Article  Google Scholar 

Kondoh T, Uneyama H, Nishino H, Torii K (2002) Melatonin reduces cerebral edema formation caused by transient forebrain ischemia in rats. Life Sci 72:583–590. https://doi.org/10.1016/S0024-3205(02)02256-7

Article  PubMed  CAS  Google Scholar 

Torii K, Uneyama H, Nishino H, Kondoh T (2004) Melatonin suppresses cerebral edema caused by middle cerebral artery occlusion/reperfusion in rats assessed by magnetic resonance imaging. J Pineal Res 36:18–24. https://doi.org/10.1046/j.1600-079x.2003.00097.x

Article  PubMed  CAS  Google Scholar 

Markus RP, Ferreira ZS, Fernandes PACM, Cecon E (2007) The immune-pineal axis: a shuttle between endocrine and paracrine melatonin sources. NeuroImmunoModulation 14:126–133. https://doi.org/10.1159/000110635

Article  PubMed  CAS  Google Scholar 

Tamura EK, Fernandes PA, Marçola M et al (2010) Long-lasting priming of endothelial cells by plasma melatonin levels. PLoS ONE 5:e13958. https://doi.org/10.1371/journal.pone.0013958

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lotufo CM, Lopes C, Dubocovich ML et al (2001) Melatonin and N-acetylserotonin inhibit leukocyte rolling and adhesion to rat microcirculation. Eur J Pharmacol 430:351–357. https://doi.org/10.1016/s0014-2999(01)01369-3

Article  PubMed  CAS  Google Scholar 

Sompol P, Liu X, Baba K et al (2011) N-acetylserotonin promotes hippocampal neuroprogenitor cell proliferation in sleep-deprived mice. Proc Natl Acad Sci U S A 108:8844–8849. https://doi.org/10.1073/pnas.1105114108

Article  PubMed  PubMed Central  Google Scholar 

Tosini G, Ye K, Iuvone PM (2012) N -Acetylserotonin: neuroprotection, neurogenesis, and the sleepy brain. Neuroscientist 18:645–653. https://doi.org/10.1177/1073858412446634

Article  PubMed  PubMed Central  CAS  Google Scholar 

Luo C, Yang Q, Liu Y et al (2019) The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radic Biol Med 130:215–233. https://doi.org/10.1016/j.freeradbiomed.2018.10.402

Article  PubMed  CAS  Google Scholar 

Volonté C, Amadio S (2022) Rethinking purinergic concepts and updating the emerging role of P2X7 and P2X4 in amyotrophic lateral sclerosis. Neuropharmacology 221:109278. https://doi.org/10.1016/j.neuropharm.2022.109278

Article  PubMed  CAS  Google Scholar 

Klein DC, Coon SL, Roseboom PH et al (1997) The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res 52:307–357 (discussion 357-358)

PubMed  CAS  Google Scholar 

Simonneaux V, Ribelayga C (2003) Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 55:325–395. https:

留言 (0)

沒有登入
gif