89Zr-immunoPET-guided selection of a CD33xIL15 fusion protein optimized for antitumor immune cell activation and in vivo tumour retention in acute myeloid leukaemia

Duval M, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol. 2010;28(23):3730–8. https://doi.org/10.1200/JCO.2010.28.8852.

Article  PubMed  PubMed Central  Google Scholar 

Gyurkocza B, Lazarus HM, Giralt S. Allogeneic hematopoietic cell transplantation in patients with AML not achieving remission: potentially curative therapy. Bone Marrow Transplant. 2017;52(8):1083–90. https://doi.org/10.1038/bmt.2017.8.

Article  CAS  PubMed  Google Scholar 

Campana D, Leung W. Clinical significance of minimal residual disease in patients with acute leukaemia undergoing haematopoietic stem cell transplantation. Br J Haematol. 2013;162(2):147–61. https://doi.org/10.1111/bjh.12358.

Article  PubMed  Google Scholar 

Feldman EJ, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol. 2005;23(18):4110–6. https://doi.org/10.1200/JCO.2005.09.133.

Article  CAS  PubMed  Google Scholar 

Caron P, et al. A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: specific targeting without immunogenicity. Blood. 1994;83(7):1760–8. https://doi.org/10.1182/blood.V83.7.1760.1760.

Article  CAS  PubMed  Google Scholar 

Caron PC, Dumont L, Scheinberg DA. Supersaturating infusional humanized anti-CD33 monoclonal antibody HuM195 in myelogenous leukemia. Clin Cancer Res. 1998;4(6):1421–8. [Online]. http://www.ncbi.nlm.nih.gov/pubmed/9626458. Accessed 06 Feb 2024.

Rosenblat TL, et al. Treatment of patients with acute myeloid leukemia with the targeted alpha-particle nanogenerator actinium-225-lintuzumab. Clin Cancer Res. 2022;28(10):2030–7. https://doi.org/10.1158/1078-0432.CCR-21-3712.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Atallah EL, et al. A phase 2 study of actinium-225 (225Ac)-lintuzumab in older patients with untreated Acute Myeloid Leukemia (AML) - Interim analysis of 1.5 µci/Kg/Dose. Blood. 2018;132(Supplement 1):1457–1457. https://doi.org/10.1182/blood-2018-99-111951.

Article  Google Scholar 

Chapuis AG, et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat Med. 2019;25(7):1064–72. https://doi.org/10.1038/s41591-019-0472-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grupp SA, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18. https://doi.org/10.1056/NEJMoa1215134.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res. 2015;3(3):219–27. https://doi.org/10.1158/2326-6066.CIR-15-0009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klebanoff CA, et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci U S A. 2004;101(7):1969–74. https://doi.org/10.1073/pnas.0307298101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klebanoff CA, et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci U S A. 2005;102(27):9571–6. https://doi.org/10.1073/pnas.0503726102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Reilly RJ, Prockop S, Hasan AN, Koehne G, Doubrovina E. Virus-specific T-cell banks for “off the shelf” adoptive therapy of refractory infections. Bone Marrow Transplant. 2016;51(9):1163–72. https://doi.org/10.1038/bmt.2016.17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hasan AN, et al. Soluble and membrane-bound interleukin (IL)-15 Rα/IL-15 complexes mediate proliferation of high-avidity central memory CD8+ T cells for adoptive immunotherapy of cancer and infections. Clin Exp Immunol. 2016;186(2):249–65. https://doi.org/10.1111/cei.12816.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hasan A, Selvakumar A, Dupont B, Sadelain M, Riviere I, O’Reilly RJ. IL-15 augments in-vitro expansion and functional activity of antigen-specific effector memory T-cells (TEM) while co-expression of IL-15 and IL-15 Rα on antigen presenting cells also promotes expansion of central memory T-Cells (TCM). Blood. 2008;112(11):3541–3541. https://doi.org/10.1182/blood.V112.11.3541.3541.

Article  Google Scholar 

Conlon KC, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol. 2015;33(1):74–82. https://doi.org/10.1200/JCO.2014.57.3329.

Article  CAS  PubMed  Google Scholar 

Cooley S, et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 2019;3(13):1970–80. https://doi.org/10.1182/bloodadvances.2018028332.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han K, et al. IL-15:IL-15 receptor alpha superagonist complex: High-level co-expression in recombinant mammalian cells, purification and characterization. Cytokine. 2011;56(3):804–10. https://doi.org/10.1016/j.cyto.2011.09.028.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romee R, et al. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood. 2018;131(23):2515–27. https://doi.org/10.1182/blood-2017-12-823757.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathew NR, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med. 2018;24(3):282–91. https://doi.org/10.1038/nm.4484.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Metzelder SK, et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia. 2012;26(11):2353–9. https://doi.org/10.1038/leu.2012.105.

Article  CAS  PubMed  Google Scholar 

Tschan-Plessl A, Halter JP, Heim D, Medinger M, Passweg JR, Gerull S. Synergistic effect of sorafenib and cGvHD in patients with high-risk FLT3-ITD+AML allows long-term disease control after allogeneic transplantation. Ann Hematol. 2015;94(11):1899–905. https://doi.org/10.1007/s00277-015-2461-5.

Article  CAS  PubMed  Google Scholar 

Zettlitz KA, et al. 89Zr-ImmunoPET shows therapeutic efficacy of anti-CD20-IFNα fusion protein in a murine B-cell lymphoma model. Mol Cancer Ther. 2022;21(4):607–15. https://doi.org/10.1158/1535-7163.MCT-21-0732.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McKnight BN, Viola-Villegas NT. 89Zr-ImmunoPET companion diagnostics and their impact in clinical drug development. J Labelled Comp Radiopharm. 2018;61(9):727–38. https://doi.org/10.1002/jlcr.3605.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dao T, et al. Depleting T regulatory cells by targeting intracellular Foxp3 with a TCR mimic antibody. Oncoimmunology. 2019;8(7):e1570778. https://doi.org/10.1080/2162402X.2019.1570778.

Article  Google Scholar 

Heeg K, Reimann J, Kabelitz D, Hardt C, Wagner H. A rapid colorimetric assay for the determination of IL-2-producing helper T cell frequencies. J Immunol Methods. 1985;77(2):237–46. https://doi.org/10.1016/0022-1759(85)90036-5.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif