Patient-Centered Management of Brain Tumor-Related Epilepsy

Maschio M, Sperati F, Dinapoli L, et al. Weight of epilepsy in brain tumor patients. J Neurooncol. 2014;118(2):385–93. https://doi.org/10.1007/s11060-014-1449-7.

Article  PubMed  Google Scholar 

Ostrom QT, Price M, Neff C, et al. CBTRUS Statistical Report: primary brain and other Central Nervous System tumors diagnosed in the United States in 2015–2019. Neuro-Oncol. 2022;24(Suppl 5):v1–95. https://doi.org/10.1093/neuonc/noac202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Venkataramani V, Tanev DI, Strahle C, et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 2019;573(7775):532–8. https://doi.org/10.1038/s41586-019-1564-x.

Article  CAS  PubMed  Google Scholar 

Venkatesh HS, Morishita W, Geraghty AC, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573(7775):539–45. https://doi.org/10.1038/s41586-019-1563-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Avila EK, Chamberlain M, Schiff D, et al. Seizure control as a new metric in assessing efficacy of tumor treatment in low-grade glioma trials. Neuro-Oncol. 2017;19(1):12–21. https://doi.org/10.1093/neuonc/now190.

Article  PubMed  Google Scholar 

Buckingham SC, Campbell SL, Haas BR, et al. Glutamate release by primary brain tumors induces epileptic activity. Nat Med. 2011;17(10):1269–74. https://doi.org/10.1038/nm.2453.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pallud J, Le Van Quyen M, Bielle F, et al. Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci Transl Med. 2014;6(244):244ra89. https://doi.org/10.1126/scitranslmed.3008065.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Curry RN, Aiba I, Meyer J, et al. Glioma epileptiform activity and progression are driven by IGSF3-mediated potassium dysregulation. Neuron. 2023;111(5):682–e6959. https://doi.org/10.1016/j.neuron.2023.01.013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishna S, Choudhury A, Keough MB et al. Glioblastoma remodelling of human neural circuits decreases survival. Nature. 2023;617(7961):599–607. https://doi.org/10.1038/s41586-023-06036-1 (This study demonstrated that glioblastoma cells functionally integrate into language circuits contributing to task-relevant neural activity and high-gamma hyperexcitability in tumor infiltrated regions. Tumor cells in areas with high alpha-band connectivity were found to secrete synaptogenic factors, and greater connectivity was associated with decreased survival).

Venkatesh HS, Johung TB, Caretti V, et al. Neuronal activity promotes Glioma Growth through Neuroligin-3 secretion. Cell. 2015;161(4):803–16. https://doi.org/10.1016/j.cell.2015.04.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neuro-Oncol. 2021;23(8):1231–51. https://doi.org/10.1093/neuonc/noab106.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen H, Judkins J, Thomas C, et al. Mutant IDH1 and seizures in patients with glioma. Neurology. 2017;88(19):1805–13. https://doi.org/10.1212/WNL.0000000000003911.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mortazavi A, Fayed F, Bachani M, et al. IDH-mutated gliomas promote epileptogenesis through d-2-hydroxyglutarate-dependent mTOR hyperactivation. Neuro-Oncol. 2022;24(9):1423–35. https://doi.org/10.1093/neuonc/noac003 (Using in vitro neuron-glioma cultures with microelectrode arrays, this study found that d-2-HG promotes hyperexcitability through a metabolic shift involving upregulation of lactate dehydrogenase A expression in an mTOR-dependent manner).

Tobochnik S, Dorotan MKC, Ghosh HS et al. Glioma genetic profiles associated with electrophysiologic hyperexcitability. Neuro-Oncol. 2024;26(2):323–334. https://doi.org/10.1093/neuonc/noad176 (In this glioma cohort, targeted exome sequencing of cancer genes revealed selective somatic mutations that were over-represented in patients with continuous EEG hyperexcitability, defined by lateralized periodic discharges and/or electrographic seizures, and independent of integrated pathologic diagnosis (including IDH mutations).

Jo J, Nevel K, Sutyla R, Smolkin M, Lopes MB, Schiff D. Predictors of early, recurrent, and intractable seizures in low-grade glioma. Neuro-Oncol Pract. 2021;8(1):40–7. https://doi.org/10.1093/nop/npaa054.

Article  Google Scholar 

Song L, Quan X, Chen C, Chen L, Zhou J. Correlation between tumor molecular markers and Perioperative Epilepsy in patients with glioma: a systematic review and Meta-analysis. Front Neurol. 2021;12:692751. https://doi.org/10.3389/fneur.2021.692751.

Article  PubMed  PubMed Central  Google Scholar 

Englot DJ, Berger MS, Barbaro NM, Chang EF. Predictors of seizure freedom after resection of supratentorial low-grade gliomas: a review. J Neurosurg. 2011;115(2):240–4. https://doi.org/10.3171/2011.3.JNS1153.

Article  PubMed  Google Scholar 

Ius T, Pauletto G, Tomasino B, et al. Predictors of postoperative seizure outcome in low Grade Glioma: from volumetric analysis to Molecular Stratification. Cancers. 2020;12(2):397. https://doi.org/10.3390/cancers12020397.

Article  PubMed  PubMed Central  Google Scholar 

Yu K, Lin CCJ, Hatcher A et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature. 2020;578(7793):166–171. https://doi.org/10.1038/s41586-020-1952-2 (This study evaluated the effect of PIK3CA driver mutations on epileptogenicity in a mouse glioblastoma model, demonstrating that certain gain-of-function somatic mutations promote excitatory-inhibitory synaptic imbalance, and indicating the relevance of the tumor genetic profile to hyperexcitability and seizure risk).

Cases-Cunillera S, van Loo KMJ, Pitsch J, et al. Heterogeneity and excitability of BRAFV600E-induced tumors is determined by Akt/mTOR-signaling state and Trp53-loss. Neuro-Oncol. 2022;24(5):741–54. https://doi.org/10.1093/neuonc/noab268.

Article  CAS  PubMed  Google Scholar 

Tobochnik S, Pisano W, Lapinskas E, Ligon KL, Lee JW. Effect of PIK3CA variants on glioma-related epilepsy and response to treatment. Epilepsy Res. 2021;175:106681. https://doi.org/10.1016/j.eplepsyres.2021.106681.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krueger Darcy A, Care Marguerite M, Katherine H, et al. Everolimus for Subependymal Giant-Cell Astrocytomas in Tuberous Sclerosis. N Engl J Med. 2010;363(19):1801–11. https://doi.org/10.1056/NEJMoa1001671.

Article  CAS  PubMed  Google Scholar 

French JA, Lawson JA, Yapici Z, et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet. 2016;388(10056):2153–63. https://doi.org/10.1016/S0140-6736(16)31419-2.

Article  CAS  PubMed  Google Scholar 

Goldberg AR, Dovas A, Torres D, et al. Glioma-Induced alterations in excitatory neurons are reversed by mTOR inhibition. BioRxiv Prepr Serv Biol. (Published Online January 2024);2024.01.10.575092.

Roy A, Skibo J, Kalume F et al. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. In: Morrison SJ, ed. ELife. 2015;4:e12703. https://doi.org/10.7554/eLife.12703.

Gupte TP, Li C, Jin L, et al. Clinical and genomic factors associated with seizures in meningiomas. J Neurosurg Published Online Dec. 2020;4:1–10. https://doi.org/10.3171/2020.7.JNS201042.

Article  Google Scholar 

Koh HY, Kim SH, Jang J, et al. BRAF somatic mutation contributes to intrinsic epileptogenicity in pediatric brain tumors. Nat Med. 2018;24(11):1662–8. https://doi.org/10.1038/s41591-018-0172-x.

Article  CAS  PubMed  Google Scholar 

Maas DA, Douw L. Multiscale network neuroscience in neuro-oncology: how tumors, brain networks, and behavior connect across scales. Neuro-Oncol Pract. 2023;10(6):506–17. https://doi.org/10.1093/nop/npad044.

Article  Google Scholar 

Avila EK, Tobochnik S, Inati SK, et al. Brain tumor-related epilepsy management: a Society for Neuro-oncology (SNO) consensus review on current management. Neuro-Oncol. 2024;26(1):7–24. https://doi.org/10.1093/neuonc/noad154.

Article  PubMed  Google Scholar 

Bruno F, Pellerino A, Conti Nibali M, et al. Association of Clinical, Tumor, and treatment characteristics with seizure control in patients with IDH1/2-Mutant Lower-Grade Glioma. Neurology. 2024;102(10):e209352. https://doi.org/10.1212/WNL.0000000000209352.

Article  CAS  PubMed  Google Scholar 

Hertler C, Seystahl K, Le Rhun E, et al. Improved seizure control in patients with recurrent glioblastoma treated with bevacizumab. Neuro-Oncol. 2022;24(11):2001–4. https://doi.org/10.1093/neuonc/noac172.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoppe C, Poepel A, Elger CE. Epilepsy: accuracy of patient seizure counts. Arch Neurol. 2007;64(11):1595–9. https://doi.org/10.1001/archneur.64.11.1595.

Article 

留言 (0)

沒有登入
gif