PTH receptor signalling, osteocytes and bone disease induced by diabetes mellitus

Sato, A. Y. et al. Protection from glucocorticoid-induced osteoporosis by anti-catabolic signaling in the absence of Sost/sclerostin. J. Bone Miner. Res. 31, 1791–1802 (2016).

Article  CAS  PubMed  Google Scholar 

Modder, U. I. et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J. Bone Miner. Res. 26, 373–379 (2010).

Article  PubMed Central  Google Scholar 

Mirza, F. S., Padhi, I. D., Raisz, L. G. & Lorenzo, J. A. Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J. Clin. Endocrinol. Metab. 95, 1991–1997 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Leanza, G. et al. Bone canonical Wnt signaling is downregulated in type 2 diabetes and associates with higher advanced glycation end-products (AGEs) content and reduced bone strength. eLife 12, RP90437 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Maycas, M. et al. PTHrP-derived peptides restore bone mass and strength in diabetic mice: additive effect of mechanical loading. J. Bone Min. Res. 32, 486–497 (2017).

Article  CAS  Google Scholar 

Garcia-Martin, A. et al. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 97, 234–241 (2012).

Article  CAS  PubMed  Google Scholar 

Yamamoto, M., Yamauchi, M. & Sugimoto, T. Elevated sclerostin levels are associated with vertebral fractures in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 98, 4030–4037 (2013).

Article  CAS  PubMed  Google Scholar 

Dragoun Kolibová, S. et al. Osteocyte apoptosis and cellular micropetrosis signify skeletal aging in type 1 diabetes. Acta Biomater. 162, 254–265 (2023).

Article  PubMed  Google Scholar 

Shao, X. et al. Amelioration of bone fragility by pulsed electromagnetic fields in type 2 diabetic KK-Ay mice involving Wnt/β-catenin signaling. Am. J. Physiol. Endocrinol. Metab. 320, E951–E966 (2021).

Article  CAS  PubMed  Google Scholar 

Abou-Samra, A. B. et al. Structure, function, and expression of the receptor for parathyroid hormone and parathyroid hormone-related peptide. Adv. Nephrol. Necker Hosp. 23, 247–264 (1994).

CAS  PubMed  Google Scholar 

Lanske, B. et al. The parathyroid hormone (PTH)/PTH-related peptide receptor mediates actions of both ligands in murine bone. Endocrinology 139, 5194–5204 (1998).

Article  CAS  PubMed  Google Scholar 

Sutkeviciute, I., Clark, L. J., White, A. D., Gardella, T. J. & Vilardaga, J.-P. PTH/PTHrP receptor signaling, allostery, and structures. Trends Endocrinol. Metab. 30, 860–874 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dean, T., Vilardaga, J. P., Potts, J. T. Jr. & Gardella, T. J. Altered selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP) for distinct conformations of the PTH/PTHrP receptor. Mol. Endocrinol. 22, 156–166 (2008).

Article  CAS  PubMed  Google Scholar 

Vilardaga, J. P. et al. Molecular mechanisms of PTH/PTHrP class B GPCR signaling and pharmacological implications. Endocr. Rev. 44, 474–491 (2023).

Article  PubMed  Google Scholar 

Okazaki, M. et al. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation. Proc. Natl Acad. Sci. USA 105, 16525–16530 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrandon, S. et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5, 734–742 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peña, K. A. Endosomal parathyroid hormone receptor signaling. Am. J. Physiol. Cell Physiol. 323, C783–c790 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Feinstein, T. N. et al. Retromer terminates the generation of cAMP by internalized PTH receptors. Nat. Chem. Biol. 7, 278–284 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

White, A. D. et al. Ca2+ allostery in PTH-receptor signaling. Proc. Natl Acad. Sci. USA 116, 3294–3299 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hattersley, G., Dean, T., Corbin, B. A., Bahar, H. & Gardella, T. J. Binding selectivity of abaloparatide for PTH-type-1-receptor conformations and effects on downstream signaling. Endocrinology 157, 141–149 (2016).

Article  CAS  PubMed  Google Scholar 

Sato, T. et al. Comparable initial engagement of intracellular signaling pathways by parathyroid hormone receptor ligands teriparatide, abaloparatide, and long-acting PTH. JBMR Plus 5, e10441 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wein, M. N. & Kronenberg, H. M. Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb. Perspect. Med. 8, a031237 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Wein, M. N., Foretz, M., Fisher, D. E., Xavier, R. J. & Kronenberg, H. M. Salt-inducible kinases: physiology, regulation by cAMP, and therapeutic potential. Trends Endocrinol. Metab. 29, 723–735 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wan, M. et al. Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes Dev. 22, 2968–2979 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jilka, R. L. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40, 1434–1446 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bellido, T., Saini, V. & Divieti Pajevic, P. Effects of PTH on osteocyte function. Bone 54, 250–257 (2013).

Article  CAS  PubMed  Google Scholar 

Pacifici, R. Role of T cells in the modulation of PTH action: physiological and clinical significance. Endocrine 44, 576–582 (2013).

Article  CAS  PubMed  Google Scholar 

Pacifici, R. T cells, osteoblasts, and osteocytes: interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone. Ann. N. Y. Acad. Sci. 1364, 11–24 (2016).

Article  CAS  PubMed  Google Scholar 

Alekos, N. S. et al. Mitochondrial β-oxidation of adipose-derived fatty acids by osteoblasts fuels parathyroid hormone-induced bone formation. JCI Insight 8, e165604 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Delgado-Calle, J. & Bellido, T. The osteocyte as a signaling cell. Physiol. Rev. 102, 379–410 (2022).

Article  CAS  PubMed  Google Scholar 

Tu, X. et al. Osteocytic PTH receptor is required for bone anabolism induced by intermittent PTH administration, but is dispensable for bone resorption and the loss of bone induced by chronic PTH elevation. J. Bone Miner. Res. 28, S233 (2013).

Google Scholar 

留言 (0)

沒有登入
gif