Organization, WH (2023) Snakebite envenoming. https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming. Acessed 22 Dec 2023
Feitosa ES et al (2015) Snakebites as a largely neglected problem in the Brazilian Amazon: highlights of the epidemiological trends in the State of Amazonas. Rev Soc Bras Med Trop 48(Suppl 1):34–41. https://doi.org/10.1590/0037-8682-0105-2013
Schneider MC et al (2021) Overview of snakebite in Brazil: Possible drivers and a tool for risk mapping. PLoS Negl Trop Dis 15:e0009044. https://doi.org/10.1371/journal.pntd.0009044
Article PubMed PubMed Central Google Scholar
Teixeira C et al (2019) Inflammation induced by platelet-activating viperid snake venoms: perspectives on thromboinflammation. Front Immunol 10:2082. https://doi.org/10.3389/fimmu.2019.02082
Article CAS PubMed PubMed Central Google Scholar
Sales PB, Santoro ML (2008) Nucleotidase and DNase activities in Brazilian snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 147:85–95. https://doi.org/10.1016/j.cbpc.2007.08.003
Article CAS PubMed Google Scholar
López-Dávila AJ et al (2021) Cytotoxicity of snake venom Lys49 PLA2-like myotoxin on rat cardiomyocytes ex vivo does not involve a direct action on the contractile apparatus. Sci Rep 11:19452. https://doi.org/10.1038/s41598-021-98594-5
Article CAS PubMed PubMed Central Google Scholar
Alvarenga EC et al (2010) Low-intensity pulsed ultrasound-dependent osteoblast proliferation occurs by via activation of the P2Y receptor: role of the P2Y1 receptor. Bone 46:355–362. https://doi.org/10.1016/j.bone.2009.09.017
Article CAS PubMed Google Scholar
Mikolajewicz N et al (2018) Mechanically stimulated ATP release from mammalian cells: systematic review and meta-analysis. J Cell Sci 131. https://doi.org/10.1242/jcs.223354
Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochem Biophys Acta 1783:673–694. https://doi.org/10.1016/J.BBAMCR.2008.01.024
Article CAS PubMed Google Scholar
Burnstock G (2015) Blood cells: an historical account of the roles of purinergic signalling. Purinergic Signal 11:411–434. https://doi.org/10.1007/s11302-015-9462-7
Article CAS PubMed PubMed Central Google Scholar
Aslam M et al (2021) Purinergic regulation of endothelial barrier function. Int J Mol Sci 22. https://doi.org/10.3390/ijms22031207
Hamoudi C, Muheidli A, Aoudjit F (2023) β1 Integrin induces adhesion and migration of human Th17 cells via Pyk2-dependent activation of P2X4 receptor. Immunology 168:83–95. https://doi.org/10.1111/imm.13563
Article CAS PubMed Google Scholar
Paredes-Gamero EJ et al (2007) P2X7-induced apoptosis decreases by aging in mice myeloblasts. Exp Gerontol 42:320–326. https://doi.org/10.1016/j.exger.2006.11.011
Article CAS PubMed Google Scholar
Boeno, CN et al (2019) Inflammasome Activation Induced by a Snake Venom Lys49-Phospholipase A(2) Homologue. Toxins (Basel) 12. https://doi.org/10.3390/toxins12010022
Barbosa CM et al (2011) Differentiation of hematopoietic stem cell and myeloid populations by ATP is modulated by cytokines. Cell Death Dis 2:e165. https://doi.org/10.1038/cddis.2011.49
Article CAS PubMed PubMed Central Google Scholar
Adamiak M et al (2022) The P2X4 purinergic receptor has emerged as a potent regulator of hematopoietic stem/progenitor cell mobilization and homing-a novel view of P2X4 and P2X7 receptor interaction in orchestrating stem cell trafficking. Leukemia 36:248–256. https://doi.org/10.1038/s41375-021-01352-9
Article CAS PubMed Google Scholar
Agra MF et al (2007) Medicinal and poisonous diversity of the flora of “Cariri Paraibano”, Brazil. J Ethnopharmacol 111:383–395. https://doi.org/10.1016/j.jep.2006.12.007
Article CAS PubMed Google Scholar
Hajdu Z, Hohmann J (2012) An ethnopharmacological survey of the traditional medicine utilized in the community of Porvenir, Bajo Paraguá Indian Reservation, Bolivia. J Ethnopharmacol 139:838–857. https://doi.org/10.1016/j.jep.2011.12.029
Sampaio-Santos MI, Kaplan MA (2001) Biosynthesis significance of iridoids in chemosystematics. J Braz Chem Soc 12:144–153. https://doi.org/10.1590/S0103-50532001000200004
Zhu W et al (2012) Anti-inflammatory and immunomodulatory effects of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on uric acid nephropathy rats. Life Sci 91:369–376. https://doi.org/10.1016/J.LFS.2012.08.013
Article CAS PubMed Google Scholar
Malange KF et al (2019) Tabebuia aurea decreases hyperalgesia and neuronal injury induced by snake venom. J Ethnopharmacol 233:131–140. https://doi.org/10.1016/J.JEP.2018.12.037
Article CAS PubMed Google Scholar
Nocchi SR et al (2020) Pharmacological properties of specioside from the stem bark of Tabebuia aurea. Rev Bras 30:118–122. https://doi.org/10.1007/S43450-020-00017-5/FIGURES/1
Reis FP et al (2014) Tabebuia aurea decreases inflammatory, myotoxic and hemorrhagic activities induced by the venom of Bothrops neuwiedi. J Ethnopharmacol 158(Pt A):352–7. https://doi.org/10.1016/j.jep.2014.10.045
Kalita B et al (2018) First report of the characterization of a snake venom apyrase (Ruviapyrase) from Indian Russell’s viper (Daboia russelii) venom. Int J Biol Macromol 111:639–648. https://doi.org/10.1016/J.IJBIOMAC.2018.01.038
Article CAS PubMed Google Scholar
Saoud S et al (2017) Purification and characterization of a platelet aggregation inhibitor and anticoagulant Cc 5_NTase, CD 73-like, from Cerastes cerastes venom. J Biochem Mol Toxicol 31. https://doi.org/10.1002/JBT.21885
Kiheli H et al (2021) Isolation and characterization of CD39-like phosphodiesterase (Cc-PDE) from Cerastes cerastes venom: molecular inhibitory mechanism of antiaggregation and anticoagulation. Protein Pept Lett 28:426–441. https://doi.org/10.2174/0929866527666200813200148
Article CAS PubMed Google Scholar
Zanin RF et al (2012) Differential macrophage activation alters the expression profile of NTPDase and ecto-5'-nucleotidase. PloS one 7. https://doi.org/10.1371/JOURNAL.PONE.0031205
Filippin KJ et al (2020) Involvement of P2 receptors in hematopoiesis and hematopoietic disorders, and as pharmacological targets. Purinergic Signal 16:1–15. https://doi.org/10.1007/s11302-019-09684-z
Article CAS PubMed Google Scholar
Kozlovskiy SA et al (2023) Anti-Inflammatory Activity of 1,4-Naphthoquinones Blocking P2X7 Purinergic Receptors in RAW 264.7 Macrophage Cells. Toxins (Basel) 15. https://doi.org/10.3390/toxins15010047
Aird SD (2002) Ophidian envenomation strategies and the role of purines. Toxicon 40:335–393. https://doi.org/10.1016/S0041-0101(01)00232-X
Article CAS PubMed Google Scholar
Burnstock G, Knight GE (2018) The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 14:1–18. https://doi.org/10.1007/s11302-017-9593-0
Article CAS PubMed Google Scholar
Kawamura H et al (2012) Extracellular ATP-stimulated macrophages produce macrophage inflammatory protein-2 which is important for neutrophil migration. Immunology 136:448–458. https://doi.org/10.1111/j.1365-2567.2012.03601.x
Article CAS PubMed PubMed Central Google Scholar
Nogueira-Pedro A et al (2014) Nitric oxide-induced murine hematopoietic stem cell fate involves multiple signaling proteins, gene expression, and redox modulation. Stem Cells 32:2949–2960. https://doi.org/10.1002/stem.1773
留言 (0)