Control and recalibration of path integration in place cells using optic flow

Etienne, A. S. & Jeffery, K. J. Path integration in mammals. Hippocampus 14, 180–192 (2004).

Article  PubMed  Google Scholar 

McNaughton, B. L. et al. Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J. Exp. Biol. 199, 173–185 (1996).

Article  CAS  PubMed  Google Scholar 

O’Keefe, J. & Conway, D. H. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 31, 573–590 (1978).

PubMed  Google Scholar 

Knierim, J. J., Kudrimoti, H. S. & McNaughton, B. L. Place cells, head direction cells, and the learning of landmark stability. J. Neurosci. 15, 1648–1659 (1995).

Article  CAS  PubMed  Google Scholar 

Knierim, J. J., Kudrimoti, H. S. & McNaughton, B. L. Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells. J. Neurophysiol. 80, 425–446 (1998).

Article  CAS  PubMed  Google Scholar 

Jayakumar, R. P. et al. Recalibration of path integration in hippocampal place cells. Nature 566, 533–537 (2019).

Article  CAS  PubMed  Google Scholar 

Chen, G., King, J. A., Burgess, N. & O’Keefe, J. How vision and movement combine in the hippocampal place code. Proc. Natl Acad. Sci. USA 110, 378–383 (2013).

Article  CAS  PubMed  Google Scholar 

Terrazas, A. et al. Self-motion and the hippocampal spatial metric. J. Neurosci. 25, 8085–8096 (2005).

Article  CAS  PubMed  Google Scholar 

Moser, E. I., Moser, M.-B. & McNaughton, B. L. Spatial representation in the hippocampal formation: a history. Nat. Neurosci. 20, 1448–1464 (2017).

Article  CAS  PubMed  Google Scholar 

Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987).

Article  CAS  PubMed  Google Scholar 

Knierim, J. J. & Hamilton, D. A. Framing spatial cognition: neural representations of proximal and distal frames of reference and their roles in navigation. Physiol. Rev. 91, 1245–1279 (2011).

Article  PubMed  Google Scholar 

Acharya, L., Aghajan, Z. M., Vuong, C., Moore, J. J. & Mehta, M. R. Causal influence of visual cues on hippocampal directional selectivity. Cell 164, 197–207 (2016).

Article  CAS  PubMed  Google Scholar 

Purandare, C. S. et al. Moving bar of light evokes vectorial spatial selectivity in the immobile rat hippocampus. Nature 602, 461–467 (2022).

Article  CAS  PubMed  Google Scholar 

McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I. & Moser, M. B. Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7, 663–678 (2006).

Article  CAS  PubMed  Google Scholar 

Savelli, F. & Knierim, J. J. Origin and role of path integration in the cognitive representations of the hippocampus: computational insights into open questions. J. Exp. Biol. 222, jeb188912 (2019).

Article  PubMed  Google Scholar 

Zhang, S., Schönfeld, F., Wiskott, L. & Manahan-Vaughan, D. Spatial representations of place cells in darkness are supported by path integration and border information. Front. Behav. Neurosci. 8, 222 (2014).

Article  PubMed  Google Scholar 

Madhav, M. S. & Cowan, N. J. The synergy between neuroscience and control theory: the nervous system as inspiration for hard control challenges. Annu. Rev. Control Robot. Auton. Syst. 3, 243–267 (2020).

Article  Google Scholar 

Cowan, N. J. et al. Feedback control as a framework for understanding tradeoffs in biology. Integr. Comp. Biol. 54, 223–237 (2014).

Article  PubMed  Google Scholar 

Marken, R. S. & Mansell, W. Perceptual control as a unifying concept in psychology. Rev. Gen. Psychol. 17, 190–195 (2013).

Article  Google Scholar 

Robinson, D. A. The use of control systems analysis in the neurophysiology of eye movements. Annu. Rev. Neurosci. 4, 463–503 (1981).

Article  CAS  PubMed  Google Scholar 

McNamee, D. & Wolpert, D. M. Internal models in biological control. Annu. Rev. Control Robot. Auton. Syst. 2, 339–364 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Wiener, N. Cybernetics or Control and Communication in the Animal and the Machine (MIT, 2019).

Huxley, A. From overshoot to voltage clamp. Trends Neurosci. 25, 553–558 (2002).

Article  CAS  PubMed  Google Scholar 

Peixoto, D. et al. Decoding and perturbing decision states in real time. Nature 591, 604–609 (2021).

Article  CAS  PubMed  Google Scholar 

Wright, J., Macefield, V. G., Schaik, Avan. & Tapson, J. C. A review of control strategies in closed-loop neuroprosthetic systems. Front. Neurosci. 10, 312 (2016).

Article  PubMed  Google Scholar 

O’Doherty, J. E. et al. Active tactile exploration using a brain-machine-brain interface. Nature 479, 228–231 (2011).

Article  PubMed  Google Scholar 

Ruffini, G. Conscious brain-to-brain communication using noninvasive technologies. in Closed Loop Neuroscience (El Hady, A. ed) 241–256 (Academic Press, 2016).

Roth, E., Sponberg, S. & Cowan, N. J. A comparative approach to closed-loop computation. Curr. Opin. Neurobiol. 25, 54–62 (2014).

Article  CAS  PubMed  Google Scholar 

Mohler, B. J. et al. Calibration of locomotion resulting from visual motion in a treadmill-based virtual environment. ACM Trans. Appl. Percept. 4, 4-es (2007).

Article  Google Scholar 

Tcheang, L., Bülthoff, H. H. & Burgess, N. Visual influence on path integration in darkness indicates a multimodal representation of large-scale space. Proc. Natl Acad. Sci. USA 108, 1152–1157 (2011).

Article  CAS  PubMed  Google Scholar 

Rieser, J. J., Pick, H. L., Ashmead, D. H. & Garing, A. E. Calibration of human locomotion and models of perceptual-motor organization. J. Exp. Psychol. Hum. Percept. Perform. 21, 480–497 (1995).

Article  CAS  PubMed  Google Scholar 

Madhav, M. S. et al. The Dome: a virtual reality apparatus for freely locomoting rodents. J. Neurosci. Methods 368, 109336 (2022).

Article  PubMed  Google Scholar 

Kautzky, M. & Thurley, K. Estimation of self-motion duration and distance in rodents. R. Soc. Open Sci. 3, 160118 (2016).

Article  PubMed  Google Scholar 

O’Connor, S. M. & Donelan, J. M. Fast visual prediction and slow optimization of preferred walking speed. J. Neurophysiol. 107, 2549–2559 (2012).

Article  PubMed  Google Scholar 

Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P. & Sahuc, S. Optic flow is used to control human walking. Nat. Neurosci. 4, 213–216 (2001).

Article  CAS  PubMed  Google Scholar 

Bruggeman, H., Zosh, W. & Warren, W. H. Optic flow drives human visuo-locomotor adaptation. Curr. Biol. 17, 2035–2040 (2007).

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif