Oxidative stress and its role in Fabry disease

Lukas J, Giese AK, Markoff A, Grittner U, Kolodny E, Mascher H, Lackner KJ, Meyer W, Wree P, Saviouk V, Rolfs A (2013) Functional characterisation of alpha-galactosidase a mutations as a basis for a new classification system in Fabry disease. PLoS Genet 9:e1003632.2

Article  Google Scholar 

Guce AI, Clark NE, Salgado N, Ivanen DR, Kulminskaya AA, Brumer H, Garman SC (2010) Catalytic mechanism of human a-galactosidase. J Biol Chem 285:3625–3632

Article  CAS  PubMed  Google Scholar 

Van Eijk M, Ferraz MJ, Boot RG, Aerts JMFG (2020) Lyso-glycosphingolipids: presence and consequences. Essays Biochem 64:565–578

Article  PubMed  PubMed Central  Google Scholar 

Germain DP (2010) Fabry disease. Orphanet J Rare Dis 5:1–49

Article  Google Scholar 

Rombach SM, Smid BE, Bouwman MG, Linthorst GE, Dijkgraaf MG, Hollak E (2013) Long term enzyme replacement therapy for Fabry disease: effectiveness on kidney, heart and brain. Orphanet J Rare Dis 8:47

Article  PubMed  PubMed Central  Google Scholar 

Ravarotto V, Simioni F, Carraro G, Bertoldi G, Pagnin E, Calò LA (2018) Oxidative stress and cardiovascular-renal damage in Fabry disease: is there room for a pathophysiological involvement? J Clin Med 7:409

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rozenfeld P, Feriozzi S (2017) Contribution of inflammatory pathways to Fabry disease pathogenesis. Mol Genet Metab 122:19–27

Article  CAS  PubMed  Google Scholar 

Lee MH, Choi N, Jeo YJ, Jung SC (2012) Possible role of transforming growth factor-B1 and vascular endothelial growth factor in Fabry disease nephropathy. Int J Mo Med 30:1275–1280

Article  CAS  Google Scholar 

Sanchez-Niño MD, Sanz AB, Carrasco S, Saleem MA, Mathieson PW, Valdivielso JM, Ruiz-Ortega M, Egido J, Ortiz A et al (2011) Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy. Nephrol Dial Transplant 26:1797–1802

Article  PubMed  Google Scholar 

Jeon YJ, Jun N, Park J-W, Park HY, Jung SC (2015) Epithelial–mesenchymal transition in kidney tubular epithelial cells induced by globotriaosylsphingosine and globotriaosylceramide. PLoS ONE 10:e0136442

Article  PubMed  PubMed Central  Google Scholar 

Chen KH, Chien Y, Wang KL, Leu HB, Hsiao CY, Lai YH, Wang CY, Chang YL, Lin SJ, Niu DM, Chiou SH, Yu WC (2016) Evaluation of proinflammatory prognostic biomarkers for Fabry cardiomyopathy with enzyme replacement therapy. Can J Cardiol 32(1221):e1-1221.e9

Google Scholar 

Hayashi Y, Hanawa H, Jiao S, Hasegawa G, Ohno Y, Yoshida K, Suzuki T, Kashimura T, Obata H, Tanaka K, Watanabe T, Minamino T (2015) Elevated endomyocardial biopsy macrophage-related markers in intractable myocardial diseases. Inflammation 38:2288–2299

Article  PubMed  Google Scholar 

Ravarotto V, Simioni F, Pagnin E, Davis PA, Calò LA (2018) Oxidative stress-chronic kidney disease-cardiovascular disease: a vicious circle. Life Sci 210:125–131

Article  CAS  PubMed  Google Scholar 

Ravarotto V, Bertoldi G, Innico G, Gobbi L, Calò LA (2021) The pivotal role of oxidative stress in the pathophysiology of cardiovascular-renal remodeling in kidney disease. Antioxidants 10:1041

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ravarotto V, Carraro G, Pagnin E, Bertoldi G, Simioni F, Maiolino G, Martinato M, Landini L, Davis PA, Calò LA (2018) Oxidative stress and the altered reaction to it in Fabry disease: a possible target for cardiovascular-renal remodeling? PLoS One 13:e0204618

Article  PubMed  PubMed Central  Google Scholar 

Lenders M, Brand E (2021) Fabry disease: the current treatment landscape. Drugs 81:635–645

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sies H et al (1985) Oxidative stress. Academic Press, London, UK

Google Scholar 

Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438

Article  PubMed  PubMed Central  Google Scholar 

Ravarotto V, Bertoldi G, Stefanelli LF, Nalesso F, Calò LA (2022) Pathomechanism of oxidative stress in cardiovascular renal remodeling and therapeutic strategies. Kidney Res Clin Pract 41:533–544

Article  PubMed  PubMed Central  Google Scholar 

Shen JS, Meng XL, Moore DF, Quirk JM, Shayma JA, Schiffmann R, Kaneski CR (2008) Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule expression in Fabry disease endothelial cells. Mol Genet Metab 95:163–168

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiou CC, Chang PY, Chan EC, Wu TL, Tsao KC, Wu JT (2003) Urinary 8-hydroxydeoxyguanosine and its analogs as DNA marker of oxidative stress: development of an ELISA and measurement in both bladder and prostate cancers. Clin Chim Acta 334:87–94

Article  CAS  PubMed  Google Scholar 

Chen KH, Chou YC, Hsiao CY, Chien Y, Wang KL, Lai YH, Chang YL, Niu DM, Yu WC (2017) Amelioration of serum 8-OHdG level by enzyme replacement therapy in patients with fabry cardiomyopathy. Biochem Biophys Res Commun 486:293–299

Article  CAS  PubMed  Google Scholar 

Chimenti C, Scopelliti F, Vulpis E, Tafani M, Villanova L, Verardo R, De Paulis R, Russo MA, Frustaci A (2015) Increased oxidative stress contributes to cardiomyocyte dysfunction and death in patients with Fabry disease cardiomyopathy. Hum Pathol 46:1760–1768

Article  CAS  PubMed  Google Scholar 

Biancini GB, Moura DJ, Manini PR, Faverzani JL, Netto CB, Deon M, Giugliani R, Saffi J, Vargas CR (2015) DNA damage in Fabry patients: an investigation of oxidative damage and repair. Mutat Res Genet Toxicol Environ Mutagen 784–785:31–36

Article  PubMed  Google Scholar 

Shu L, Vivekanandan-Giri A, Pennathur S, Smid BE, Aerts JM, Hollak CE, Shayman JA (2014) Establishing 3-nitrotyrosine as a biomarker for the vasculopathy of Fabry disease. Kidney Int 86:58–66

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen JS, Arning E, West ML, Day S, Chen S, Meng XL, Forni S, McNeill N, Goker- Alpan O, Wang X, Ashcraft P, Moore DF, Cheng SH, Schiffmann R, Bottiglieri T (2017) Tet-rahydrobiopterin deficiency in the pathogenesis of Fabry disease. Hum Mol Genet 26:1182–1192

Article  CAS  PubMed  Google Scholar 

Namdar M, Gebhard C, Studiger R, Shi Y, Mocharla P, Schmied C, Brugada P, Lüscher TF, Camici GC (2012) Glo-botriaosylsphingosine accumulation and not alpha-galactosidase-a deficiency causes endothelial dysfunction in Fabry disease. PloS ONE 7:e36373

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun J, Druhan LJ, Zweier JL (2010) Reactive oxygen and nitrogen species regulate inducible nitric oxide synthase function shifting the balance of nitric oxide and superoxide production. Arch Biochem Biophys 494:130–137

Article  CAS  PubMed  Google Scholar 

Bodary PF, Shen Y, Vargas FB, Bi X, Ostenso KA, Gu S (2005) Alpha-galactosidase a deficiency accelerates atherosclerosis in mice with apolipoprotein E deficiency. Circulation 111:629–632

Article  CAS  PubMed  Google Scholar 

Biancini GB, Vanzin CS, Rodrigues DB, Deon M, Ribas GS, Barschak AG, Manfredini V, Netto CBO, Jardim LB, Giugliani R, Vargas CR (2012) Globotriaosylceramide is correlated with oxidative stress and inflammation in Fabry patients treated with enzyme replacement therapy. Biochim Biophys Acta 1822:226–232

Article  CAS 

留言 (0)

沒有登入
gif